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and inner product spaces

By GY. SZABÓ (Debrecen)
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Abstract. In a normed vector space (X, ‖ · ‖), consider James’ isosceles orthog-
onality, i.e., x ⊥ y ⇐⇒ ‖x + y‖ = ‖x − y‖. It is known that any odd, orthogonally
additive mapping from X into an Abelian group is unconditionally additive whenever
dim X ≥ 3. In this paper a complementary result is presented: the existence of a
nontrivial even orthogonally additive mapping characterizes inner product spaces for
dim X ≥ 2. The proof uses some interesting connectivity theorems.

1. Introduction

Mappings from a vector space into an Abelian group that are additive
on orthogonal pairs of vectors have been studied for long by several au-
thors. For an early contribution, see [3]. Besides the usual inner product
orthogonality, some other relation were considered such as orthogonalities
defined by a bilinear/sesquilinear form (see e.g. [13, 10]), by a norm of the
space (see e.g. [7, 8]) or just by some abstract properties (see e.g. [1, 4]).

Based on some weak assumptions and the homogeneity, the most cru-
cial property of such a relation, a general abstract theory was developed
in [5], resulting in an additive/quadratic representation of orthogonally
additive mappings: odd solutions are additive while the even ones are
quadratic. Moreover, the existence of a nontrivial, even solution is char-
acteristic for (generalized) inner product orthogonalities (see e.g. [9, 11]).

In normed vector spaces, however, there are some natural generaliza-
tions of the usual inner product orthogonality, homogeneity of which char-
acterizes inner product spaces. Such relations are, for instance, James’
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isosceles orthogonality or the Pythagorean orthogonality (see [2]). Due
to the lack of homogeneity, these relations are not covered by the general
theory mentioned above.

Using connectivity theorems for intersection of spheres in normed
spaces of dimension ≥ 3, we have succeded recently in proving the additiv-
ity of an odd, isosceles orthogonally additive mapping (see [12]). The main
purpose of this paper is to present a complementary result: the existence
of a nontrivial even isosceles orthogonally additive mapping characterizes
inner product spaces even if dimension ≥ 2.

More precisely, let (X, ‖·‖) be a real normed vector space of dimension
≥ 2 and (Y, +) be an Abelian group. Consider James’ isosceles orthogo-
nality ⊥ in X defined by x ⊥ y ⇐⇒ ‖x + y‖ = ‖x − y‖ (x, y ∈ X). A
mapping f : X → Y is said to be (isosceles) orthogonally additive, if it
satisfies the conditional Cauchy equation

f(x + y) = f(x) + f(y), whenever x ⊥ y.

Now we are ready to formulate our main result:

Theorem 1.1. There exists a nontrivial, even, isosceles orthogonally
additive mapping from X to Y if, and only if, X is an inner product space.

The idea of the proof is as follows:
First we prove that an even solution f depends only on the norm of

the argument, i.e., f has the same value on vectors of equal norm. Then
using a characterization of inner product spaces due to Senechalle [6], we
show that in a non-inner product space there are also vectors of different
norm on which the solution f takes the same value. Finally, we use certain
connectivity theorems to prove that f is constant in regions bounded by
concentric spheres: since these regions cover the whole space (but zero),
f is constant and so identically zero. For the detailed proof see Section 3
below.

2. Connectivity theorems

We start with a technical observation:

Lemma 2.1. If ‖x‖ = ‖y‖ = 1 and there exists a scalar 0 < λ0 < 1
such that ‖λ0x + (1− λ0)y‖ = 1, then

‖λx + (1− λ)y‖ = 1
for all 0 < λ < 1.
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Proof. For any 0 < λ < 1, let u(λ) denote the convex combination
λx + (1− λ)y. Then obviously

‖u(λ)‖ ≤ λ‖x‖+ (1− λ)‖y‖ = 1.

On the other hand, if λ0 < λ < 1, then we have

u(λ0) =
λ0

λ
u(λ) +

(
1− λ0

λ

)
y

and so by 0 < λ0/λ < 1,

1 = ‖u(λ0)‖ ≤ λ0

λ
‖u(λ)‖+

(
1− λ0

λ

)
,

whence ‖u(λ)‖ ≥ 1 follows.
The case 0 < λ < λ0 can be treated in a similar way.

From now on, the sphere centered at a ∈ X with radius δ > 0 is
denoted by

Sa(δ) = {x ∈ X | ‖x− a‖ = δ}.
For S0(1) we simply write S.

Now suppose that 0 < δ ≤ 1 and a ∈ X \{0} with 1−δ ≤ ‖a‖ ≤ 1+δ.
Letting u = a/‖a‖ ∈ S, for a vector v ∈ S \ lin{u}, consider the closed
halfplane

P+
v = {σu + τv | σ, τ ∈ R, τ ≥ 0}.

Then we are going to show that

Lemma 2.2. The set

Kv = S ∩ Sa(δ) ∩ P+
v

is non-empty, closed and convex. In fact, Kv is a closed interval.

Proof. For δ = 1, 0 < ‖a‖ ≤ 2, the statement has already been
proved in [12], Lemma 2.3. Thus we may and do assume that δ < 1.

The set Kv is obviously closed. On the other hand, the mapping
ϕ(x) = ‖x−a‖ is continuous on the connected semi-circle S∩P+

v containing
−u and u. Since

ϕ(−u) = 1 + ‖a‖ > 1 > δ ≥ |1− ‖a‖| = ‖u− a‖ = ϕ(u),

there exists a vector x ∈ S ∩ P+
v with ϕ(x) = δ, i.e., x ∈ Kv.
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Next we prove the convexity of Kv. To do this, take any vectors
x, y ∈ Kv. Then all the vectors

x′=
x− a

δ
, y′=

y − a

δ
, x′′ = −x, y′′ = −y, x′′′ = −x′, y′′′ = −y′

are in S. We have to show that the line segment [x, y] is contained in Kv.
For x = y there is nothing to prove, while for b = y − x 6= 0 the following
cases may occur:

Case I. b = βa. Changing the role of x and y, if it is necessary, we
may assume that β > 0. Then x = λx′ + µy with

λ =
βδ

β + 1
> 0 and µ =

1
β + 1

> 0.

Thus
1 = ‖x‖ ≤ λ‖x′‖+ µ‖y‖ = λ + µ =

βδ + 1
β + 1

,

whence the contradiction δ ≥ 1 follows.
Case II. Vectors a and b are linearly independent. Then x and y can

be expressed as

x = αa + βb and y = αa + (β + 1)b.

Without loss of generality, we may assume that β ≥ 0 (x, y ∈ P+
v implies

that β and β + 1 are of the same sign, thus the role of x and y should be
changed only, when β < 0).

First we claim that α > 0 and α 6= 1. The value α = 0 is impossible
since otherwise 1 = ‖x‖ = β‖b‖ < (β + 1)‖b‖ = ‖y‖ = 1 would follow.
Similarly, α = 1 would imply 1 = ‖x′‖ = β

δ ‖b‖ < β+1
δ ‖b‖ = ‖y′‖ = 1.

Now, on contrary, assume that α < 0. Then x = λx′ + µy with

λ =
−αδ

β − α + 1
> 0 and µ =

β

β − α + 1
≥ 0.

Thus
1 = ‖x‖ ≤ λ‖x′‖+ µ‖y‖ = λ + µ =

β − αδ

β − α + 1
,

whence the contradiction α ≥ 1
1−δ > 0 follows.

Now there may occur two different cases:
(i) 0 < α < 1. Then for

λ = 1− α

β + 1
> 0 and µ =

1− α

δ(β + 1)
> 0,
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we have x′ = λy′ + µy′′, whence

1 = ‖x′‖ ≤ λ‖y′‖+ µ‖y′′‖ = λ + µ = 1 +
1− α− δα

δ(β + 1)

and so α ≤ 1
1+δ . On the other hand, for

λ =
δα

β + 1
> 0 and µ = 1 +

α− 1
β + 1

> 0,

we have x′′ = λy′ + µy′′, whence

1 = ‖x′′‖ ≤ λ‖y′‖+ µ‖y′′‖ = λ + µ = 1 +
δα + α− 1

β + 1

and so α ≥ 1
1+δ . Thus we have proved that

α =
1

1 + δ
.

This fact implies that x′ = (1− λ′)y′ + λ′y′′ with

0 < λ′ =
1

(1 + δ)(β + 1)
< 1,

and x′′ = λ′′y′ + (1− λ′′)y′′ with

0 < λ′′ =
δ

(1 + δ)(β + 1)
< 1.

Hence by Lemma 2.1,

[x′, y′] ⊂ [y′, y′′] ⊂ S and [x′′, y′′] ⊂ [y′, y′′] ⊂ S.

From the second inclusion it follows that

[x, y] = −[x′′, y′′] ⊂ −S = S

while from the first one, we have for all 0 ≤ λ ≤ 1 that

1 = ‖λx′+(1−λ)y′‖ = ‖λx− a

δ
+(1−λ)

y − a

δ
‖ =

1
δ
‖(λx+[1−λ]y)−a‖,

i.e., λx + (1− λ)y ∈ Sa(δ). Thus

[x, y] ⊂ S ∩ Sa(δ) ∩ P+
v = Kv

what was to be proved.
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(ii) α > 1. Then for

λ =
α− 1

δ(α + β)
> 0 and µ =

δβ

δ(α + β)
≥ 0,

we have x′ = λx + µy′, whence

1 = ‖x′‖ ≤ λ‖x‖+ µ‖y′‖ = λ + µ =
α− 1 + δβ

δ(α + β)

and so α ≥ 1
1−δ . On the other hand, for

λ =
β + 1
α + β

> 0 and µ =
δα

α + β
> 0,

we have y = λx + µy′, whence

1 = ‖y‖ ≤ λ‖x‖+ µ‖y′‖ = λ + µ =
β + 1 + δα

α + β

and so α ≤ 1
1−δ . Thus we have proved that

α =
1

1− δ
.

This fact implies that x′ = λ′x + (1− λ′)y′ with

0 < λ′ =
1

1 + β(1− δ)
≤ 1

and y = (1− λ′′)x + λ′′y′ with

0 < λ′′ =
δ

1 + β(1− δ)
< 1.

This latter means by Lemma 2.1 that [x, y′] ⊂ S. Also it follows that

[x′, y′] ⊂ [x, y′] ⊂ S and [x, y] ⊂ [x, y′] ⊂ S.

From the first inclusion, we have for all 0 ≤ λ ≤ 1 that

1 = ‖λx′+(1−λ)y′‖ = ‖λx− a

δ
+(1−λ)

y − a

δ
‖ =

1
δ
‖(λx+[1−λ]y)−a‖,

i.e., λx + (1− λ)y ∈ Sa(δ). Thus

[x, y] ⊂ S ∩ Sa(δ) ∩ P+
v = Kv

what was to be proved.
Finally, note that a convex subset of a plane without interior point is

necessarily an interval.
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Theorem 2.3. In a real normed vector space of dimension ≥ 3, the
intersection of two spheres is connected (or empty).

Proof. For σ ≥ τ > 0 and s, t ∈ X, σ−τ ≤ ‖s−t‖ ≤ σ+τ , consider
the intersection

K ′ = Ss(σ) ∩ St(τ).

Then the continuous mapping ϕ : X → X,

ϕ(x) = σx + s

carries S ∩ Sa(δ) onto K ′, where δ = τ/σ and a = (t − s)/σ. So it is
sufficient to prove the connectivity of

K = S ∩ Sa(δ)

for 0 < δ ≤ 1 and 1 − δ ≤ ‖a‖ ≤ 1 + δ. If a = 0, then δ = 1 and so
there is nothing to prove. Thus we may and do assume that a 6= 0 whence
u = a/‖a‖ ∈ S.

Let now b ∈ K be arbitrarily fixed and for any x ∈ K choose vectors
vx1, vx2 ∈ S such that a, b, x ∈ lin{u, vx1, vx2} = Mx and dim Mx = 3.
Then Wx = S ∩Mx is a closed, bounded sphere in the finite dimensional
subspace Mx and so it is compact. Furthermore, in the two dimensional
subspace Lx = lin{vx1, vx2}, the set Vx = S∩Lx is a connected circle. Now
consider the relation Fx ⊂ Vx × Wx defined for any v ∈ Vx by Fx(v) =
Kv = S∩Sa(δ)∩P+

v , the non-empty, closed, connected interval introduced
in the previous lemma. It is known from [12], Corollary 2.2, that a closed
relation between a connected and a compact metric space is itself connected
provided it is defined everywhere with connected values. Thus as soon as
it will have been shown that Fx is closed, the connectivity of

Fx(Vx) =
⋃

v∈Vx

(K ∩ P+
v ) = K ∩Mx 3 x, b

will be clear.
For that reason take a sequence (vn, wn) ∈ Fx converging to some

(v0, w0) ∈ Vx × Wx. It is clear that ε = dist(u, Lx) > 0. Since wn ∈
Fx(vn) ⊂ P+

vn
, it can be written as

wn = σnu + τnvn with τn ≥ 0.

On the other hand, w0 can be combined linearly from u and some v ∈ Vx:

w0 = σ0u + τ0v with τ0 ≥ 0.

Then we have
‖wn − w0‖
|σn − σ0| =

∥∥∥∥u− τ0v − τnvn

σn − σ0

∥∥∥∥ ≥ ε,
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whence

|σn − σ0| ≤ ‖wn − w0‖
ε

−→ 0.

Thus
τnvn = wn − σnu −→ w0 − σ0u = τ0v,

and by the continuity of the norm,

τn = ‖τnvn‖ −→ ‖τ0v‖ = τ0.

Hence by vn −→ v0,
τnvn → τ0v0

holds true, as well and by the uniqueness of the limit, τ0v0 = τ0v, i.e.,

w0 = σ0u + τ0v0 ∈ P+
v0

.

On the other hand, wn ∈ Kvn ⊂ K and because of K is closed,
w0 ∈ K, i.e., w0 ∈ K ∩ P+

v0
= Kv0 = Fx(v0). Thus (v0, w0) ∈ Fx and

therefore Fx is closed.
Finally,

⋂
x∈K Fx(Vx) is non-empty (namely it contains b), whence

K =
⋃

x∈K

Fx(Vx)

is connected.

Theorem 2.4. In a real normed vector space of dimension ≥ 3, the
set

Cδ = {(u, v) ∈ S × S | ‖u− v‖ = δ} ⊂ S × S

is connected for any 0 ≤ δ ≤ 2.

Proof. The set Cδ is a relation on the connected sphere S and by
Theorem 2.3,

Cδ(u) = {v ∈ S | ‖u− v‖ = δ} = S ∩ Su(δ)

is non-empty, connected for all u ∈ S. We shall use [12], Lemma 2.1 to
prove the connectivity of relation Cδ.

If δ = 0, then C0 is the diagonal of S × S, so it is connected.
If δ = 2, then for any sequence un ∈ S converging to u0 ∈ S, we have

−un ∈ C2(un) for all n ∈ N. Since −un −→ −u0 ∈ C2(u0), by virtue of
[12], Lemma 2.1, the proof is complete.

Now consider the case of 0 < δ < 2. For a sequence un ∈ S converging
to u0 ∈ S, choose v ∈ S \ lin{u0}. Then

Cδ(un) ∩ lin{u0, v} 6= ∅
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for sufficiently large n’s. Since any sequence vn ∈ Cδ(un)∩lin{u0, v} is con-
tained in the compact metric space S∩ lin{u0, v}, the Bolzano-Weierstrass
Theorem ensures the existence of a convergent selection vnk

−→ v0 ∈ S.
Since ‖unk

− vnk
‖ = δ and unk

−→ u0, we have ‖u0 − v0‖ = δ, i.e.,
v0 ∈ Cδ(u0). Therefore [12], Lemma 2.1 completes the proof.

Theorem 2.5. Suppose that s, t ∈ X is a normed base for the two
dimensional space X: ‖s‖ = ‖t‖ = 1, lin{s, t} = X. For a couple of
vectors x = σxs + τxt and y = σys + τyt in X, let denote

det(x, y) = σxτy − τxσy.

Then for any 0 ≤ δ ≤ 2, the sets

C±δ = {(u, v) ∈ S × S | ‖u− v‖ = δ, det(u, v) ∈ R±}
are connected.

Proof. We perform the proof for C+
δ which is a relation on the com-

pact, connected circle S. For any u ∈ S, the set

uP+ = {x ∈ X | det(u, x) ≥ 0}
is a closed halfplane, so

C+
δ (u) = S ∩ Su(δ) ∩ uP+

is a non-empty, connected interval.
Now we are going to show that C+

δ is closed. Indeed, if (un, vn) ∈ C+
δ

converging to some (u0, v0) ∈ S × S, then by the continuity of the norm,
δ = ‖un − vn‖ −→ ‖u0 − v0‖, whence ‖u0 − v0‖ = δ. Furthermore, by the
continuity of the determinant,

det(un, vn) −→ det(u0, v0)

showing det(u0, v0) ≥ 0.
These mean that

v0 ∈ S ∩ Su0(δ) ∩ u0P
+ = C+

δ (u0),

i.e., (u0, v0) ∈ C+
δ . Thus [12], Corollary 2.2 completes the proof.
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3. Proof of the main theorem

Proof. Assume that X is not an inner product space and f : X → Y
is an even, orthogonally additive mapping. We are going to show that f
is identically zero.

First we claim that f takes the same value on vectors of equal norm.
Indeed, for x, y ∈ X, ‖x‖ = ‖y‖, letting p = (x + y)/2, q = (x− y)/2, we
have

‖p + q‖ = ‖x‖ = ‖y‖ = ‖p− q‖,
i.e., p ⊥ ±q. Hence

f(x) = f(p + q) = f(p) + f(q) = f(p) + f(−q) = f(p− q) = f(y).

This means that f depends only on the norm of x, i.e., there exists a
function on the non-negative reals into Y such that

f(x) = ϕ(‖x‖), x ∈ X.

Also, observe that

f(2x) = f(2p + 2q) = f(2p) + f(2q) = f(x + y) + f(x− y),

or in another equivalent form

f(x + y) = f(2x)− f(x− y), x, y ∈ X, ‖x‖ = ‖y‖.
By a theorem of Senechalle [6], if X fails to be an inner product space,

then there exist couples of vectors (u1, v1), (u2, v2) ∈ S × S such that

‖u1 − v1‖ = ‖u2 − v2‖ = δ but ‖u1 + v1‖ = ρ1 < ρ2 = ‖u2 − v2‖.
Now consider the scalar set

Γδ = {‖u + v‖ | u, v ∈ S, ‖u− v‖ = δ}
which is image of the set

Cδ = {(u, v) ∈ S × S | ‖u− v‖ = δ}
through the continuous sum-norm function γ : S × S → R, γ(u, v) =
‖u + v‖.

When dim X ≥ 3, by Theorem 2.4, Cδ is connected and so is Γδ. For
dim X = 2, by Theorem 2.5, Cδ = C+

δ ∪C−δ holds with connected C+
δ , C−δ

and
(u, v) ∈ C+

δ ⇐⇒ (v, u) ∈ C−δ ,

whence
γ(C+

δ ) = γ(C−δ ) = γ(Cδ) = Γδ
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is connected. This means in both cases that Γδ is an interval containing
[ρ1, ρ2].

Now let µ > 0 be fixed and take any ρ1 ≤ ρ ≤ ρ2. Then ρ ∈ Γδ

and so ρ = ‖u + v‖ for some u, v ∈ S with ‖u − v‖ = δ. Using the above
observation for x = µu, y = µv, (µ > 0) we have

ϕ(µρ) = f(µu + µv) = f(2µu)− f(µu− µv) = ϕ(2µ)− ϕ(µδ),

i.e., ϕ(µρ) does not depend on ρ. Thus ϕ is constant on all the intervals
[µρ1, µρ2], µ > 0, whence so is on the whole positive real line:

ϕ(ρ) = c, ρ > 0.

Finally, choosing any u, v ∈ S, u ⊥ v, we have u + v 6= 0 and so

c = f(u + v) = f(u) + f(v) = c + c.

Thus c = 0 and so for all x ∈ X \ {0}
f(x) = ϕ(‖x‖) = 0,

which, together with the obvious equality f(0) = 0, means that f is iden-
tically zero.

This completes the proof.

Acknowledgement. The author is grateful to the referees for their valu-
able remarks on the manuscript of this paper.
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H–4010 DEBRECEN, PF. 12
HUNGARY

(Received May 2, 1994)


