Isosceles orthogonally additive mappings and inner product spaces

By GY. SZABÓ (Debrecen)
Dedicated to Professor János Aczél on his 70th birthday

Abstract

In a normed vector space $(X,\|\cdot\|)$, consider James' isosceles orthogonality, i.e., $x \perp y \Longleftrightarrow\|x+y\|=\|x-y\|$. It is known that any odd, orthogonally additive mapping from X into an Abelian group is unconditionally additive whenever $\operatorname{dim} X \geq 3$. In this paper a complementary result is presented: the existence of a nontrivial even orthogonally additive mapping characterizes inner product spaces for $\operatorname{dim} X \geq 2$. The proof uses some interesting connectivity theorems.

1. Introduction

Mappings from a vector space into an Abelian group that are additive on orthogonal pairs of vectors have been studied for long by several authors. For an early contribution, see [3]. Besides the usual inner product orthogonality, some other relation were considered such as orthogonalities defined by a bilinear/sesquilinear form (see e.g. [13, 10]), by a norm of the space (see e.g. $[7,8]$) or just by some abstract properties (see e.g. [1, 4]).

Based on some weak assumptions and the homogeneity, the most crucial property of such a relation, a general abstract theory was developed in [5], resulting in an additive/quadratic representation of orthogonally additive mappings: odd solutions are additive while the even ones are quadratic. Moreover, the existence of a nontrivial, even solution is characteristic for (generalized) inner product orthogonalities (see e.g. [9, 11]).

In normed vector spaces, however, there are some natural generalizations of the usual inner product orthogonality, homogeneity of which characterizes inner product spaces. Such relations are, for instance, James'

[^0]isosceles orthogonality or the Pythagorean orthogonality (see [2]). Due to the lack of homogeneity, these relations are not covered by the general theory mentioned above.

Using connectivity theorems for intersection of spheres in normed spaces of dimension ≥ 3, we have succeded recently in proving the additivity of an odd, isosceles orthogonally additive mapping (see [12]). The main purpose of this paper is to present a complementary result: the existence of a nontrivial even isosceles orthogonally additive mapping characterizes inner product spaces even if dimension ≥ 2.

More precisely, let $(X,\|\cdot\|)$ be a real normed vector space of dimension ≥ 2 and $(Y,+)$ be an Abelian group. Consider James' isosceles orthogonality \perp in X defined by $x \perp y \Longleftrightarrow\|x+y\|=\|x-y\|(x, y \in X)$. A mapping $f: X \rightarrow Y$ is said to be (isosceles) orthogonally additive, if it satisfies the conditional Cauchy equation

$$
f(x+y)=f(x)+f(y), \quad \text { whenever } \quad x \perp y
$$

Now we are ready to formulate our main result:
Theorem 1.1. There exists a nontrivial, even, isosceles orthogonally additive mapping from X to Y if, and only if, X is an inner product space.

The idea of the proof is as follows:
First we prove that an even solution f depends only on the norm of the argument, i.e., f has the same value on vectors of equal norm. Then using a characterization of inner product spaces due to Senechalle [6], we show that in a non-inner product space there are also vectors of different norm on which the solution f takes the same value. Finally, we use certain connectivity theorems to prove that f is constant in regions bounded by concentric spheres: since these regions cover the whole space (but zero), f is constant and so identically zero. For the detailed proof see Section 3 below.

2. Connectivity theorems

We start with a technical observation:
Lemma 2.1. If $\|x\|=\|y\|=1$ and there exists a scalar $0<\lambda_{0}<1$ such that $\left\|\lambda_{0} x+\left(1-\lambda_{0}\right) y\right\|=1$, then

$$
\|\lambda x+(1-\lambda) y\|=1
$$

for all $0<\lambda<1$.

Proof. For any $0<\lambda<1$, let $u(\lambda)$ denote the convex combination $\lambda x+(1-\lambda) y$. Then obviously

$$
\|u(\lambda)\| \leq \lambda\|x\|+(1-\lambda)\|y\|=1
$$

On the other hand, if $\lambda_{0}<\lambda<1$, then we have

$$
u\left(\lambda_{0}\right)=\frac{\lambda_{0}}{\lambda} u(\lambda)+\left(1-\frac{\lambda_{0}}{\lambda}\right) y
$$

and so by $0<\lambda_{0} / \lambda<1$,

$$
1=\left\|u\left(\lambda_{0}\right)\right\| \leq \frac{\lambda_{0}}{\lambda}\|u(\lambda)\|+\left(1-\frac{\lambda_{0}}{\lambda}\right)
$$

whence $\|u(\lambda)\| \geq 1$ follows.
The case $0<\lambda<\lambda_{0}$ can be treated in a similar way.
From now on, the sphere centered at $a \in X$ with radius $\delta>0$ is denoted by

$$
S_{a}(\delta)=\{x \in X \mid\|x-a\|=\delta\}
$$

For $S_{0}(1)$ we simply write S.
Now suppose that $0<\delta \leq 1$ and $a \in X \backslash\{0\}$ with $1-\delta \leq\|a\| \leq 1+\delta$. Letting $u=a /\|a\| \in S$, for a vector $v \in S \backslash \operatorname{lin}\{u\}$, consider the closed halfplane

$$
P_{v}^{+}=\{\sigma u+\tau v \mid \sigma, \tau \in \mathbb{R}, \tau \geq 0\}
$$

Then we are going to show that
Lemma 2.2. The set

$$
K_{v}=S \cap S_{a}(\delta) \cap P_{v}^{+}
$$

is non-empty, closed and convex. In fact, K_{v} is a closed interval.
Proof. For $\delta=1,0<\|a\| \leq 2$, the statement has already been proved in [12], Lemma 2.3. Thus we may and do assume that $\delta<1$.

The set K_{v} is obviously closed. On the other hand, the mapping $\varphi(x)=\|x-a\|$ is continuous on the connected semi-circle $S \cap P_{v}^{+}$containing $-u$ and u. Since

$$
\varphi(-u)=1+\|a\|>1>\delta \geq|1-\|a\||=\|u-a\|=\varphi(u)
$$

there exists a vector $x \in S \cap P_{v}^{+}$with $\varphi(x)=\delta$, i.e., $x \in K_{v}$.

Next we prove the convexity of K_{v}. To do this, take any vectors $x, y \in K_{v}$. Then all the vectors

$$
x^{\prime}=\frac{x-a}{\delta}, \quad y^{\prime}=\frac{y-a}{\delta}, \quad x^{\prime \prime}=-x, \quad y^{\prime \prime}=-y, \quad x^{\prime \prime \prime}=-x^{\prime}, \quad y^{\prime \prime \prime}=-y^{\prime}
$$

are in S. We have to show that the line segment $[x, y]$ is contained in K_{v}. For $x=y$ there is nothing to prove, while for $b=y-x \neq 0$ the following cases may occur:

Case I. $b=\beta a$. Changing the role of x and y, if it is necessary, we may assume that $\beta>0$. Then $x=\lambda x^{\prime}+\mu y$ with

$$
\lambda=\frac{\beta \delta}{\beta+1}>0 \quad \text { and } \quad \mu=\frac{1}{\beta+1}>0
$$

Thus

$$
1=\|x\| \leq \lambda\left\|x^{\prime}\right\|+\mu\|y\|=\lambda+\mu=\frac{\beta \delta+1}{\beta+1}
$$

whence the contradiction $\delta \geq 1$ follows.
Case II. Vectors a and b are linearly independent. Then x and y can be expressed as

$$
x=\alpha a+\beta b \quad \text { and } \quad y=\alpha a+(\beta+1) b
$$

Without loss of generality, we may assume that $\beta \geq 0\left(x, y \in P_{v}^{+}\right.$implies that β and $\beta+1$ are of the same sign, thus the role of x and y should be changed only, when $\beta<0$).

First we claim that $\alpha>0$ and $\alpha \neq 1$. The value $\alpha=0$ is impossible since otherwise $1=\|x\|=\beta\|b\|<(\beta+1)\|b\|=\|y\|=1$ would follow. Similarly, $\alpha=1$ would imply $1=\left\|x^{\prime}\right\|=\frac{\beta}{\delta}\|b\|<\frac{\beta+1}{\delta}\|b\|=\left\|y^{\prime}\right\|=1$. Now, on contrary, assume that $\alpha<0$. Then $x=\lambda x^{\prime}+\mu y$ with

$$
\lambda=\frac{-\alpha \delta}{\beta-\alpha+1}>0 \quad \text { and } \quad \mu=\frac{\beta}{\beta-\alpha+1} \geq 0
$$

Thus

$$
1=\|x\| \leq \lambda\left\|x^{\prime}\right\|+\mu\|y\|=\lambda+\mu=\frac{\beta-\alpha \delta}{\beta-\alpha+1}
$$

whence the contradiction $\alpha \geq \frac{1}{1-\delta}>0$ follows.
Now there may occur two different cases:
(i) $0<\alpha<1$. Then for

$$
\lambda=1-\frac{\alpha}{\beta+1}>0 \quad \text { and } \quad \mu=\frac{1-\alpha}{\delta(\beta+1)}>0
$$

we have $x^{\prime}=\lambda y^{\prime}+\mu y^{\prime \prime}$, whence

$$
1=\left\|x^{\prime}\right\| \leq \lambda\left\|y^{\prime}\right\|+\mu\left\|y^{\prime \prime}\right\|=\lambda+\mu=1+\frac{1-\alpha-\delta \alpha}{\delta(\beta+1)}
$$

and so $\alpha \leq \frac{1}{1+\delta}$. On the other hand, for

$$
\lambda=\frac{\delta \alpha}{\beta+1}>0 \quad \text { and } \quad \mu=1+\frac{\alpha-1}{\beta+1}>0
$$

we have $x^{\prime \prime}=\lambda y^{\prime}+\mu y^{\prime \prime}$, whence

$$
1=\left\|x^{\prime \prime}\right\| \leq \lambda\left\|y^{\prime}\right\|+\mu\left\|y^{\prime \prime}\right\|=\lambda+\mu=1+\frac{\delta \alpha+\alpha-1}{\beta+1}
$$

and so $\alpha \geq \frac{1}{1+\delta}$. Thus we have proved that

$$
\alpha=\frac{1}{1+\delta} .
$$

This fact implies that $x^{\prime}=\left(1-\lambda^{\prime}\right) y^{\prime}+\lambda^{\prime} y^{\prime \prime}$ with

$$
0<\lambda^{\prime}=\frac{1}{(1+\delta)(\beta+1)}<1
$$

and $x^{\prime \prime}=\lambda^{\prime \prime} y^{\prime}+\left(1-\lambda^{\prime \prime}\right) y^{\prime \prime}$ with

$$
0<\lambda^{\prime \prime}=\frac{\delta}{(1+\delta)(\beta+1)}<1
$$

Hence by Lemma 2.1,

$$
\left[x^{\prime}, y^{\prime}\right] \subset\left[y^{\prime}, y^{\prime \prime}\right] \subset S \quad \text { and } \quad\left[x^{\prime \prime}, y^{\prime \prime}\right] \subset\left[y^{\prime}, y^{\prime \prime}\right] \subset S
$$

From the second inclusion it follows that

$$
[x, y]=-\left[x^{\prime \prime}, y^{\prime \prime}\right] \subset-S=S
$$

while from the first one, we have for all $0 \leq \lambda \leq 1$ that
$1=\left\|\lambda x^{\prime}+(1-\lambda) y^{\prime}\right\|=\left\|\lambda \frac{x-a}{\delta}+(1-\lambda) \frac{y-a}{\delta}\right\|=\frac{1}{\delta}\|(\lambda x+[1-\lambda] y)-a\|$,
i.e., $\lambda x+(1-\lambda) y \in S_{a}(\delta)$. Thus

$$
[x, y] \subset S \cap S_{a}(\delta) \cap P_{v}^{+}=K_{v}
$$

what was to be proved.
(ii) $\alpha>1$. Then for

$$
\lambda=\frac{\alpha-1}{\delta(\alpha+\beta)}>0 \quad \text { and } \quad \mu=\frac{\delta \beta}{\delta(\alpha+\beta)} \geq 0
$$

we have $x^{\prime}=\lambda x+\mu y^{\prime}$, whence

$$
1=\left\|x^{\prime}\right\| \leq \lambda\|x\|+\mu\left\|y^{\prime}\right\|=\lambda+\mu=\frac{\alpha-1+\delta \beta}{\delta(\alpha+\beta)}
$$

and so $\alpha \geq \frac{1}{1-\delta}$. On the other hand, for

$$
\lambda=\frac{\beta+1}{\alpha+\beta}>0 \quad \text { and } \quad \mu=\frac{\delta \alpha}{\alpha+\beta}>0
$$

we have $y=\lambda x+\mu y^{\prime}$, whence

$$
1=\|y\| \leq \lambda\|x\|+\mu\left\|y^{\prime}\right\|=\lambda+\mu=\frac{\beta+1+\delta \alpha}{\alpha+\beta}
$$

and so $\alpha \leq \frac{1}{1-\delta}$. Thus we have proved that

$$
\alpha=\frac{1}{1-\delta} .
$$

This fact implies that $x^{\prime}=\lambda^{\prime} x+\left(1-\lambda^{\prime}\right) y^{\prime}$ with

$$
0<\lambda^{\prime}=\frac{1}{1+\beta(1-\delta)} \leq 1
$$

and $y=\left(1-\lambda^{\prime \prime}\right) x+\lambda^{\prime \prime} y^{\prime}$ with

$$
0<\lambda^{\prime \prime}=\frac{\delta}{1+\beta(1-\delta)}<1
$$

This latter means by Lemma 2.1 that $\left[x, y^{\prime}\right] \subset S$. Also it follows that

$$
\left[x^{\prime}, y^{\prime}\right] \subset\left[x, y^{\prime}\right] \subset S \quad \text { and } \quad[x, y] \subset\left[x, y^{\prime}\right] \subset S
$$

From the first inclusion, we have for all $0 \leq \lambda \leq 1$ that
$1=\left\|\lambda x^{\prime}+(1-\lambda) y^{\prime}\right\|=\left\|\lambda \frac{x-a}{\delta}+(1-\lambda) \frac{y-a}{\delta}\right\|=\frac{1}{\delta}\|(\lambda x+[1-\lambda] y)-a\|$,
i.e., $\lambda x+(1-\lambda) y \in S_{a}(\delta)$. Thus

$$
[x, y] \subset S \cap S_{a}(\delta) \cap P_{v}^{+}=K_{v}
$$

what was to be proved.
Finally, note that a convex subset of a plane without interior point is necessarily an interval.

Theorem 2.3. In a real normed vector space of dimension ≥ 3, the intersection of two spheres is connected (or empty).

Proof. For $\sigma \geq \tau>0$ and $s, t \in X, \sigma-\tau \leq\|s-t\| \leq \sigma+\tau$, consider the intersection

$$
K^{\prime}=S_{s}(\sigma) \cap S_{t}(\tau)
$$

Then the continuous mapping $\varphi: X \rightarrow X$,

$$
\varphi(x)=\sigma x+s
$$

carries $S \cap S_{a}(\delta)$ onto K^{\prime}, where $\delta=\tau / \sigma$ and $a=(t-s) / \sigma$. So it is sufficient to prove the connectivity of

$$
K=S \cap S_{a}(\delta)
$$

for $0<\delta \leq 1$ and $1-\delta \leq\|a\| \leq 1+\delta$. If $a=0$, then $\delta=1$ and so there is nothing to prove. Thus we may and do assume that $a \neq 0$ whence $u=a /\|a\| \in S$.

Let now $b \in K$ be arbitrarily fixed and for any $x \in K$ choose vectors $v_{x 1}, v_{x 2} \in S$ such that $a, b, x \in \operatorname{lin}\left\{u, v_{x 1}, v_{x 2}\right\}=M_{x}$ and $\operatorname{dim} M_{x}=3$. Then $W_{x}=S \cap M_{x}$ is a closed, bounded sphere in the finite dimensional subspace M_{x} and so it is compact. Furthermore, in the two dimensional subspace $L_{x}=\operatorname{lin}\left\{v_{x 1}, v_{x 2}\right\}$, the set $V_{x}=S \cap L_{x}$ is a connected circle. Now consider the relation $F_{x} \subset V_{x} \times W_{x}$ defined for any $v \in V_{x}$ by $F_{x}(v)=$ $K_{v}=S \cap S_{a}(\delta) \cap P_{v}^{+}$, the non-empty, closed, connected interval introduced in the previous lemma. It is known from [12], Corollary 2.2, that a closed relation between a connected and a compact metric space is itself connected provided it is defined everywhere with connected values. Thus as soon as it will have been shown that F_{x} is closed, the connectivity of

$$
F_{x}\left(V_{x}\right)=\bigcup_{v \in V_{x}}\left(K \cap P_{v}^{+}\right)=K \cap M_{x} \ni x, b
$$

will be clear.
For that reason take a sequence $\left(v_{n}, w_{n}\right) \in F_{x}$ converging to some $\left(v_{0}, w_{0}\right) \in V_{x} \times W_{x}$. It is clear that $\varepsilon=\operatorname{dist}\left(u, L_{x}\right)>0$. Since $w_{n} \in$ $F_{x}\left(v_{n}\right) \subset P_{v_{n}}^{+}$, it can be written as

$$
w_{n}=\sigma_{n} u+\tau_{n} v_{n} \quad \text { with } \quad \tau_{n} \geq 0
$$

On the other hand, w_{0} can be combined linearly from u and some $v \in V_{x}$:

$$
w_{0}=\sigma_{0} u+\tau_{0} v \quad \text { with } \quad \tau_{0} \geq 0
$$

Then we have

$$
\frac{\left\|w_{n}-w_{0}\right\|}{\left|\sigma_{n}-\sigma_{0}\right|}=\left\|u-\frac{\tau_{0} v-\tau_{n} v_{n}}{\sigma_{n}-\sigma_{0}}\right\| \geq \varepsilon
$$

whence

$$
\left|\sigma_{n}-\sigma_{0}\right| \leq \frac{\left\|w_{n}-w_{0}\right\|}{\varepsilon} \longrightarrow 0 .
$$

Thus

$$
\tau_{n} v_{n}=w_{n}-\sigma_{n} u \longrightarrow w_{0}-\sigma_{0} u=\tau_{0} v,
$$

and by the continuity of the norm,

$$
\tau_{n}=\left\|\tau_{n} v_{n}\right\| \longrightarrow\left\|\tau_{0} v\right\|=\tau_{0}
$$

Hence by $v_{n} \longrightarrow v_{0}$,

$$
\tau_{n} v_{n} \rightarrow \tau_{0} v_{0}
$$

holds true, as well and by the uniqueness of the limit, $\tau_{0} v_{0}=\tau_{0} v$, i.e.,

$$
w_{0}=\sigma_{0} u+\tau_{0} v_{0} \in P_{v_{0}}^{+} .
$$

On the other hand, $w_{n} \in K_{v_{n}} \subset K$ and because of K is closed, $w_{0} \in K$, i.e., $w_{0} \in K \cap P_{v_{0}}^{+}=K_{v_{0}}=F_{x}\left(v_{0}\right)$. Thus $\left(v_{0}, w_{0}\right) \in F_{x}$ and therefore F_{x} is closed.

Finally, $\bigcap_{x \in K} F_{x}\left(V_{x}\right)$ is non-empty (namely it contains b), whence

$$
K=\bigcup_{x \in K} F_{x}\left(V_{x}\right)
$$

is connected.
Theorem 2.4. In a real normed vector space of dimension ≥ 3, the set

$$
C_{\delta}=\{(u, v) \in S \times S \mid\|u-v\|=\delta\} \subset S \times S
$$

is connected for any $0 \leq \delta \leq 2$.
Proof. The set C_{δ} is a relation on the connected sphere S and by Theorem 2.3,

$$
C_{\delta}(u)=\{v \in S \mid\|u-v\|=\delta\}=S \cap S_{u}(\delta)
$$

is non-empty, connected for all $u \in S$. We shall use [12], Lemma 2.1 to prove the connectivity of relation C_{δ}.

If $\delta=0$, then C_{0} is the diagonal of $S \times S$, so it is connected.
If $\delta=2$, then for any sequence $u_{n} \in S$ converging to $u_{0} \in S$, we have $-u_{n} \in C_{2}\left(u_{n}\right)$ for all $n \in \mathbb{N}$. Since $-u_{n} \longrightarrow-u_{0} \in C_{2}\left(u_{0}\right)$, by virtue of [12], Lemma 2.1, the proof is complete.

Now consider the case of $0<\delta<2$. For a sequence $u_{n} \in S$ converging to $u_{0} \in S$, choose $v \in S \backslash \operatorname{lin}\left\{u_{0}\right\}$. Then

$$
C_{\delta}\left(u_{n}\right) \cap \operatorname{lin}\left\{u_{0}, v\right\} \neq \emptyset
$$

for sufficiently large n 's. Since any sequence $v_{n} \in C_{\delta}\left(u_{n}\right) \cap \operatorname{lin}\left\{u_{0}, v\right\}$ is contained in the compact metric space $S \cap \operatorname{lin}\left\{u_{0}, v\right\}$, the Bolzano-Weierstrass Theorem ensures the existence of a convergent selection $v_{n_{k}} \longrightarrow v_{0} \in S$. Since $\left\|u_{n_{k}}-v_{n_{k}}\right\|=\delta$ and $u_{n_{k}} \longrightarrow u_{0}$, we have $\left\|u_{0}-v_{0}\right\|=\delta$, i.e., $v_{0} \in C_{\delta}\left(u_{0}\right)$. Therefore [12], Lemma 2.1 completes the proof.

Theorem 2.5. Suppose that $s, t \in X$ is a normed base for the two dimensional space $X:\|s\|=\|t\|=1, \operatorname{lin}\{s, t\}=X$. For a couple of vectors $x=\sigma_{x} s+\tau_{x} t$ and $y=\sigma_{y} s+\tau_{y} t$ in X, let denote

$$
\operatorname{det}(x, y)=\sigma_{x} \tau_{y}-\tau_{x} \sigma_{y}
$$

Then for any $0 \leq \delta \leq 2$, the sets

$$
C_{\delta}^{ \pm}=\left\{(u, v) \in S \times S \mid\|u-v\|=\delta, \operatorname{det}(u, v) \in \mathbb{R}_{ \pm}\right\}
$$

are connected.
Proof. We perform the proof for C_{δ}^{+}which is a relation on the compact, connected circle S. For any $u \in S$, the set

$$
{ }_{u} P^{+}=\{x \in X \mid \operatorname{det}(u, x) \geq 0\}
$$

is a closed halfplane, so

$$
C_{\delta}^{+}(u)=S \cap S_{u}(\delta) \cap_{u} P^{+}
$$

is a non-empty, connected interval.
Now we are going to show that C_{δ}^{+}is closed. Indeed, if $\left(u_{n}, v_{n}\right) \in C_{\delta}^{+}$ converging to some $\left(u_{0}, v_{0}\right) \in S \times S$, then by the continuity of the norm, $\delta=\left\|u_{n}-v_{n}\right\| \longrightarrow\left\|u_{0}-v_{0}\right\|$, whence $\left\|u_{0}-v_{0}\right\|=\delta$. Furthermore, by the continuity of the determinant,

$$
\operatorname{det}\left(u_{n}, v_{n}\right) \longrightarrow \operatorname{det}\left(u_{0}, v_{0}\right)
$$

showing $\operatorname{det}\left(u_{0}, v_{0}\right) \geq 0$.
These mean that

$$
v_{0} \in S \cap S_{u_{0}}(\delta) \cap{ }_{u_{0}} P^{+}=C_{\delta}^{+}\left(u_{0}\right),
$$

i.e., $\left(u_{0}, v_{0}\right) \in C_{\delta}^{+}$. Thus [12], Corollary 2.2 completes the proof.

3. Proof of the main theorem

Proof. Assume that X is not an inner product space and $f: X \rightarrow Y$ is an even, orthogonally additive mapping. We are going to show that f is identically zero.

First we claim that f takes the same value on vectors of equal norm. Indeed, for $x, y \in X,\|x\|=\|y\|$, letting $p=(x+y) / 2, q=(x-y) / 2$, we have

$$
\|p+q\|=\|x\|=\|y\|=\|p-q\|
$$

i.e., $p \perp \pm q$. Hence

$$
f(x)=f(p+q)=f(p)+f(q)=f(p)+f(-q)=f(p-q)=f(y)
$$

This means that f depends only on the norm of x, i.e., there exists a function on the non-negative reals into Y such that

$$
f(x)=\varphi(\|x\|), \quad x \in X
$$

Also, observe that

$$
f(2 x)=f(2 p+2 q)=f(2 p)+f(2 q)=f(x+y)+f(x-y)
$$

or in another equivalent form

$$
f(x+y)=f(2 x)-f(x-y), \quad x, y \in X, \quad\|x\|=\|y\| .
$$

By a theorem of Senechalle [6], if X fails to be an inner product space, then there exist couples of vectors $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in S \times S$ such that

$$
\left\|u_{1}-v_{1}\right\|=\left\|u_{2}-v_{2}\right\|=\delta \quad \text { but } \quad\left\|u_{1}+v_{1}\right\|=\rho_{1}<\rho_{2}=\left\|u_{2}-v_{2}\right\| .
$$

Now consider the scalar set

$$
\Gamma_{\delta}=\{\|u+v\| \mid u, v \in S,\|u-v\|=\delta\}
$$

which is image of the set

$$
C_{\delta}=\{(u, v) \in S \times S \mid\|u-v\|=\delta\}
$$

through the continuous sum-norm function $\gamma: S \times S \rightarrow \mathbb{R}, \gamma(u, v)=$ $\|u+v\|$.

When $\operatorname{dim} X \geq 3$, by Theorem 2.4, C_{δ} is connected and so is Γ_{δ}. For $\operatorname{dim} X=2$, by Theorem 2.5, $C_{\delta}=C_{\delta}^{+} \cup C_{\delta}^{-}$holds with connected $C_{\delta}^{+}, C_{\delta}^{-}$ and

$$
(u, v) \in C_{\delta}^{+} \Longleftrightarrow(v, u) \in C_{\delta}^{-},
$$

whence

$$
\gamma\left(C_{\delta}^{+}\right)=\gamma\left(C_{\delta}^{-}\right)=\gamma\left(C_{\delta}\right)=\Gamma_{\delta}
$$

is connected. This means in both cases that Γ_{δ} is an interval containing [ρ_{1}, ρ_{2}].

Now let $\mu>0$ be fixed and take any $\rho_{1} \leq \rho \leq \rho_{2}$. Then $\rho \in \Gamma_{\delta}$ and so $\rho=\|u+v\|$ for some $u, v \in S$ with $\|u-v\|=\delta$. Using the above observation for $x=\mu u, y=\mu v,(\mu>0)$ we have

$$
\varphi(\mu \rho)=f(\mu u+\mu v)=f(2 \mu u)-f(\mu u-\mu v)=\varphi(2 \mu)-\varphi(\mu \delta)
$$

i.e., $\varphi(\mu \rho)$ does not depend on ρ. Thus φ is constant on all the intervals [$\mu \rho_{1}, \mu \rho_{2}$], $\mu>0$, whence so is on the whole positive real line:

$$
\varphi(\rho)=c, \quad \rho>0
$$

Finally, choosing any $u, v \in S, \quad u \perp v$, we have $u+v \neq 0$ and so

$$
c=f(u+v)=f(u)+f(v)=c+c
$$

Thus $c=0$ and so for all $x \in X \backslash\{0\}$

$$
f(x)=\varphi(\|x\|)=0
$$

which, together with the obvious equality $f(0)=0$, means that f is identically zero.

This completes the proof.
Acknowledgement. The author is grateful to the referees for their valuable remarks on the manuscript of this paper.

References

[1] S. GUDDER and D. STRAWTHER, Orthogonally additive and orthogonally increasing functions on vector spaces, Pacific J. Math. 58 (1975), 427-436.
[2] R. C. James, Orthogonality in normed linear spaces, Duke Math. J. 12 (1945), 291-302.
[3] A. Pinsker, Sur une fonctionnelle dans l'espace de Hilbert, C.R. Acad. Sci. URSS N.S. 20 (1938), 411-414.
[4] J. RÄTZ, On orthogonally additive mappings, Aequationes Math. 28 (1985), 35-49.
[5] J. RÄTZ and Gy. Szabó, On orthogonally additive mappings, IV., Aequationes Math. 38 (1989), 73-85.
[6] D.A. Senechalle, A characterization of inner product spaces, Proc. Amer. Math. Soc. 19 (1968), 1306-1312.
[7] K. Sundaresan, Orthogonality and nonlinear functionals on Banach spaces, Proc. Amer. Math. Soc. 34 (1972), 187-190.
[8] Gy. Szabó, On mappings, orthogonally additive in the Birkhoff-James sense, $A e$ quationes Math. 30 (1986), 93-105.
[9] Gy. Szabó, On orthogonality spaces admitting nontrivial even orthogonally additive mappings, Acta Math. Hung. 56 (1990), 177-187.
[10] Gy. Szabó, Φ-orthogonally additive mappings I., Acta. Math. Hung. 58 (1991), 101-111.
[11] Gy. Szabó, A characterization of generalized inner product spaces, Aequationes Math. 42 (1991), 225-238.
[12] Gy. Szabó, A conditional Cauchy equation on normed spaces, Publicationes Math. Debrecen 42 (1993), 265-271.
[13] F. Vajzović, On a functional which is additive on A-orthogonal pairs, Glasnik Mat. 21 (1966), 75-81.

GYÖRGY SZABÓ
INSTITUTE OF MATHEMATICS \& INFORMATICS
L. KOSSUTH UNIVERSITY

EGYETEM TÉR 1
H-4010 DEBRECEN, PF. 12
HUNGARY

[^0]: Research supported by the Hungarian National Foundation for Scientific Research (OTKA), Grant No. 1652

