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On the structure of univoque numbers

By ZOLTAN DAROCZY (Debrecen)* and IMRE KATAI (Budapest, Pécs)**

1. Introduction

We shall continue our investigation in [1] on univoque sequences gen-
erated by ©-adic expansion of real numbers. A method for the compu-
tation of the Hausdorff dimension of the set of univoque numbers will be
presented.

1
For € = (e1,€9,...) € {0,1} let

(e,0) = f: £,0m.
n=1

A sequence ¢ is said to be univoque with respect to © if <€, @> = <(5, @>,
§ € {0,1}" implies that € = §, i.e that ¢, =6; (j = 1,2,...).

It is known that for any = € [0, L(©)] there exists an ¢ € {0,1} such
that x = <5, @>, namely this is true for ¢,, = €, (), where &, (x) is defined
by induction on n, as follows:

n—1
1oif 3o ()0 + O™ < 1,

(1.1) en(z) = =
0 if > &(x)0'+ 0" > 1.

i=1

The expansion (e(z),0) = z, e(z) = (£1(z), ...) is called the regular
expansion of z.

*This work was supported by the National Science Foundation Grant OTKA 1652.
**The research has been supported by GO WEST grant and the OTKA 2153.
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Every x € (0, L(0©)] can be expanded by the digits, d,, = d,(z) (n =
1,2,...) as well, where they are defined from

n—1
1oif 3o 6; ()0 + O™ <,

(1.2) On(z) = =
0 if > §;(x)0' + 0" > 1.

i=1

The expansion z = (6(z),0), d(z) = (61(x),...) is called the quasi-
regular expansion of x.

The expansions (), 6(x) are the same except, if the regular expansion
of x is finite (i.e. if £, (z) = 0 for all large n).

Let R(©) ={e(x) | x € [0,L]}, R1(©) ={e(z) |z €[0,1)}.
Let [ = 1(0) = (I1,l,...) € {0,1} be the quasi-regular expansion of 1,
ie. 9;(1)=1; (j =1,2,...). If 1 has a finite regular expansion in the base
0O, and <5(1),@> =510+ -+ 5,0F s, =1, then 6(1) = (s1, 82,...,5% —
1,0, s1,...,8, —1,0...), i.e. §(1) is a periodic sequence with period k.

W. PARRY [2] gave a simple characterization of the sequences a =
{ay,az,...} € {0,1} of R(©) : a € Ry(0©), if and only if

(13) {CLT,CLT_Fl,...}<{l1,l2,...} (7“:1,2,...)

holds, in the sense of the lexicographic ordering.
He proved furthermore that [ € {0,1}" is the regular expansion of 1
for a suitable © € [%, 1), if and only if

l{ =1 and
(1.4) {lk+1,lk+2,...} <{l1,l2,...}
k=1,2,...

holds.

One can prove simply that the periodic sequence | € {0,1} with
[y = 1 is the quasi-regular expansion of 1 with a suitable © & [%, 1) if and
only if

(1.5) i losrs Y < {ln, 0oy} (k=1,2,...)

holds. If (1.5) holds, then with the corresponting © as base, the regular
expansion of 1 is finite. In [1] we proved the following assertions (Theo-
rem 2.1 and 2.4 which are formulated now as Lemma 1 and 2).

Lemma 1. The sequence € € {0,1}" is univoque with respect to © if
and only if both of the sequences ¢,1 — ¢ € R(©), where 1 = {1,1,...}.

Let U(O) be the set of univoque sequences.
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Lemma 2. If $ <©' <O < 1, then U(©) C U(O').

Definition. The number © € (%, 1) is said to be stable from below, if
U(©) = U(©’) holds for some ©' < ©. Similarly, © is stable from above,
if U(©") = U(©) holds for some ©" > ©.

Remark. This definition is somewhat different from that was given
in [1].
Let H(= He), H*(= H{) be the set of univoque numbers (with respect
to ©) on the intervals [0, 1), [0, 1), respectively. It is clear that

(1.6) H* = {0} U G o"H.

n=0

The set of univoque numbers x € [1, L] can be given as (L — H*) N [1, L.
Let

(1.6) U1(0) :={e € U(®),(e,0) € H},

i.e. U1(O) is the set of those univoque sequences for which the represented
number (g, 0) falls into [©,1).

2. A new notation for univoque sequences

First of all, let Cj, denote the set of words of length A over N, and M
be the set of infinite words over N, i.e. let

Kp == {mimg...mp;m; € N}
M:={m=mims...;m; € N}.

Let F}, : M — K}, be the mapping Fj,(m) = my ... my; let o be the shift
operator acting as o(mimsg...) = moms... .

Let us define the ordering relations in X, and in M by the following
relations:

(1) in K1 (= N) : the common ordering
(2) in Ko : myng < mymsg holds if ny < my, or if

ni=my; and ng > mso.
(h) in Kp, : ning...np <mq...myp, if
ny <mi, orif ny =mq and no...np >mo...my.

In other words, if ny...n, # my...mj, and k is the smallest index for
which ny # my, then
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forodd k: ni...np<mqi...mp, if ng < myg
foreven k: ni...np <mq...myp, if ng > my.
Let m,n be two distinct words in M. We say shat m < n, if Fj(m) #
Fp,(n) implies that Fj,(m) < Fp(n) in K. It is clear that this definition is
correct.
Let E C {0,1}" be the set of those sequences ¢ = {e1,¢2,...} in which
both of 0 and 1 occurs infinitely often, and e; = 1. Let ¢ : E — M be
the one to one mapping defined as follows: Let e (considered as an infinite
word over {0,1}) of form 1910°11920%2 ... . Then () = a1brashs ... .

It is clear that, if £, € E, then ¢ < § holds in F (in the sense of the
lexicograpic ordering) if and only if ¢(g) < ¢(§) in M.

We have U1(0) C E. Let M© = M9 = o(17,(0)).

Let furthermore
t=tita--- = p(1(9)),

where [(O) is the sequence getting as the quasiregular expansion of 1 in
the base ©.
From the Parry condition and Lemma 1 we have

Lemma 3. o € M belongs to /\/lg)) if and only if

(2.1) c@) <t (1=0,1,2,...).

Proor. Clear.
Let Y =y1ya... €M, Yo =F,(Y)=9y1...Yn;
(2.2) S(Y):={aeM: d'(a) <Y, 1=0,1,2,...},
(2.3) Up(Y):={aeM: Fplo'(a)) <Y, 1=0,1,2,...},
(2.4) Vi(V):={aeM: Flo'(a) <Y, 1=0,1,2,...}.
It is clear that Uy (Y) CUx(Y) C ... and V1(Y) D Va(Y) D ...
Lemma 4. For each k,l € N we have

(2.5) Un(Y) € S(Y) C Vi(Y).

PRrROOF. Clear.
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Lemma 5. Let p be the smallest integer, if any, for which there exist
u,r > 1, u+r = p such that

(2-6) Yut1 - - - Yutr > Yr
in the sense of ordering introduced in IC,.. Then

(2.7) S(Y) =U,(Y).

ProOF. If there is an a € Vi (V) \ Uysrr(Y), then Fp(c?(a)) =Y,
holds for some j. Then

F.(07T(a)) > Yy,
ie. a ¢ V. (Y). Hence V4, (Y) = Uyy(Y), and (2.7) follows from (2.5).
Lemma 6. Ifys; > y;, then
(2.8) SY)={a=aaz... | 1<a; <y —1}.
Let yo = y1 and denote z = y1y1y1 .... If z > Y, then S(Y') as in (2.8). If
z <Y, then
(29) S(Y):{a:alaQ... ’ 1§a3§y1—1,]:1,2,}u
U{OK:/QZ|ﬁ:b1-~~bh71§bj§y1_17h:071727"'}

(h = 0 is for the empty word!)

PRrOOF. The first assertion comes from Lemma 5 immediately. As-
sume that yo = y;. If @ € S(Y), and the first occurrence of y; in the
sequence is ap,1 = y1, then a = ajas . ..apz, thus o’ (a) = z, " (a) < Y,
this may occur only if z < Y. The further part of the lemma is clear.

Lemma 7. Lett = t1to--- = ¢(l(0)), and assume that ty > t1. Then

MY ={a=aay... | 1<a;<t;—1,j=1,2,...}.

ProoF. The assertion immediately follows from Lemma 4 and 6. The
only critical element is z = t1t; ... in the case to = t1. Since t comes from a
quasi regular expansion of 1, therefore to; 1 < ?; and in the case t3;41 = 1
toj42 > ta = t1, since o (t) < t. If ty = t; for each k, then z = ¢, and

z < t does not hold. Let k be the smallest index for which ¢; # ¢1. If k
odd, then t; < t1, but then z > t. If k even, then t;, > t;, and similarly

we have z > t. Thus z ¢ M(@?).
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3. The structure of Méo) in the case t9 > t;

Theorem 1. Assume that the condition stated in Lemma 7 holds.
Then H is self-similar, it is the attractor of the iterated function system

t1—1 t1—1

(3.1) H = U U far,a:(H)

a1:1 a,2:1

where fo, a,(x) = O + 0% T%25 The components on the right hand side
of (3.1) are disjoint sets.
Let ¢ denote the positive root of the polynomial =1 + ... 42 — 1; let

log1/¢
s =
log1/©

(3.2) (<1).
Then the Hausdorff dimension of H equals to its similarity dimension,
=s.

PROOF. (3.1) is a consequence of Lemma 7. From the definition fol-
lows that the components are disjoint. H is closed and bounded. The
further assertion follows from a theorem of Hutchinson (see G. EDGAR

3)-

4. On the set F

Let F denote the set of those © for which 1 is univoque with respect to
©. If the regular expansion of 1 is finite, then clearly © ¢ F, since then 1
has another expansion. If © € F,t = ¢(I(0)), then (¢~ '(57(¢)),0) € He
for each 5 > 1, therefore

(41)j O'j(z) <t (.] = 1727)

holds.

Let now t € M be an arbitrary sequence for which (4.1)j (j =1,2,...)
holds. The fulfilment of the conditions (4.1)2; (I =1,2,...) guarantee the
existence of a © for which p~!(t) = 1(0), © € (1,1). Then (4.1)j implies
that (¢~1(c7(t)),0) € H for j > 1 (see Lemma 3), thus 1 is univoque
with respect to ©. We have proved

Theorem 2. t € M is the image of the regular (quasi-regular) expan-
sion of 1 in the base of a suitable © € F if and only if (4.1)j (j =1,2,...)
holds.
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Theorem 3. The Lebesgue measure of F is zero, its Hausdorff dimen-
sion is 1.

5—1
ProOF. I. In [1] we proved that © € F implies that © < \/_2 :

Let ©® and ©’ be such numbers for which I(©) = {l1,...,lk, lk+1,---},
HO) = {1, sl U5 Uy -+ } lk+1 0,0, =1

Let Pi(z) = Y. 1j27 — 1, Py(z) = Z ljz7 + > 1Ij27 — 1. Since
j=1 ' j=k+1

P1(0) =0,(0") =0,P(0) = IP (@) Pi(0)] < cOF, P5(8) — P»(0') =
= (0 —-0")PJ(),¢ € (0,0, and (0 <)c; < PJ(§) < co with numerical
constants ¢y, co, therefore

(4.2) 0<0 -0 <30k,
Lth:{@|@€f tl—K} If@E]:K,then
1 =0+ ---4+0uh fehtttl ..., = K, t, < K, consequently
Ok = ma @ satisfies
@E}—
K
(4.3) Z — @

Let R be an arbitrary large integer. Let us classify the elements of
Fx according to the sequence t1,ts,...,tz. The distance of two numbers,
@1,@2 € Fx with FR(SO(Gl)) = FR(QO(@Q)) = t1ty...tp is less than
c3@RT TR due to (4.2). Thus Fx can be covered by finitely many
intervals the total length of which is less than

c3<Z@J ) < es(1— @R

The right hand side tends to zero as R — oo. Thus meas (Fg) = 0,
whence meas (F) = ) meas (Fg) = 0. The first part of the theorem is
proved.

II. Let .7-}(?) be the subset of Fi defined by the conditions .7:1(?) =
{© ] el(©)) =tita...; t1 = K;1 <t; < K —1,j > 2}. We shall show
that for any given o < 1 there is a K such that the Hausdorff dimension
of ]—"I(?) is larger than o.

Let Onin, Omax denote the smallest and the largest elements of .7:[(?) , Te-
spectively. Assume that K > 3. Then ¢(l(Opin))=K 1 (K—-1)1(K-1)....
Let W be the positive root of the polynomial 1 — (z + - -- + 2%~1). Then
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Omin < Omax < VY, furthermore Vg —Onin < ¢ \Ilﬁ holds with a suitable
numerical constant ¢. The last inequality follows from (4.2).

Let © < ©, 0,0 € FY with I(©) = lyly...,1(®') = l4l}... such that
ls =0,ls41 =1and [; = l;- for 1 < 7 < s. Assume that s > K. Then
LO+ -+ 11O 1 4+0°>1, 1O+ +1,_; O 140" <1—-05FtK,
The polynomial h(z) :=l1z + -+ l;_12°71 + 2° satisfies (1 <)h/(z) <9
for 2 < 0,9, say, whence

Q" TE <« h(O) - hO) = (0 —-0)N (), € (0,0)

thus
! 1 1s+K 1 s+K
(4.4) ©O-0 >-0 > — -7,
9 9 min
Let f(V) be the number of the sequences l1,...,ly which occur as the

first V' elements of I(©) = {l1,l2,...} for some © € f[((o). For V.> U
and given I7,...05; let g(V | If,...,1{;) be the number of the distinct
l1,...,ly occuring in the beginning of I(©) = {l1,ls,...} for which the
first U elements are fixed, [ =17,...,ly =}

Lemma 8. With suitable positive constants c¢(K),ci(K),co(K) we
have

(4.5) f(V) =c(K)UY(1+0(1)) as V — oo,
(4.6) a(K)<g(V I, )0 Y <c(K) if U<V.

First we continue the proof of the theorem assuming the validity of
Lemma 8, then we prove it.

Assume in contrary that dimension (.7-"}(?)) < o. Then, for arbitrary
o0

choice of €, > 0, there is a covering .7-}(?) C | Ej, such that diam E; < §
i=1

] =
and

> (diam E;)° <e.

oo
Jj=1

Then there is such a covering with open intervals I;, and even we may
assume that the set of lengths of I; belongs to theset {©]; |[r=1,2,...}.

.7:[(?) is a closed set. Let .7-}(?) C Ui,

in ‘
(4.7) Y (diamI;)” <, diamI; <6,

J=1
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From the Heine-Borel theorem we obtain that there is a finite subcover,

P
.7-}(?) C U I;. Let M, be the number of intervals I; with length ©]
j=1

min*

log1/d
Let r, = [L], and r; be the largest j for which M; # 0. Then
log 1/Omin
M; =0 for j <r,. We have
p .
(4.8) (diam ;) < > M;0) <e.

Jj=1 To<J<ry

Let V > r; and ]—"}?)(11, ...,ly) be the set of those © € f}?), for which

the first V' elements of [(O) is the given sequence [y, ...,y .
Ife,,04 € ]:1(?) are covered with the same interval I; of length ©7 ; ,
then O], > |©; — O3] and by (4.4) we obtain that the first r — K — 4

digits of 1(01) and of I[(O3) coincide.
Due to (4.6), the number of that sets among -7:;(?)(51, ..., ly) which have
nonempty intersection with I, is less than

co(K)W Kt Y

Since any of F 1(? ) (I1,...,ly) has a nonempty intersection with at least one
I;, therefore

fV) S e(K)uY > MOt

TOSTSTI

Then, from (4.5), taking the limit V' — oo, we have

1 eK)
(A:=)— < M, - ¥ .
W el 2,
From (4.8) it follows that M, < eO_!7, thus
W \7
4.9 A< (5—) -
1) e Y (2
To<1r<T]1 min

If K is large enough, then Uy < ©7, . For such choice of K the inequality

(4.9) cannot be held if ¢ is small enough. This finishes the proof of the
theorem.

PROOF of Lemma 8. Let fi1(n) be the number of that sequences in
{0,1}™, which do not contain K consecutive 1’s and 0's.

Then fi(n) = filn — 1)+ -+ fi(n — (K — 1)) for n > K. The
characteristic polynomial 2%~ — (252 4+ ... 4 2 4+ 1) of this recursion
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has only one root, namely W' in the domain |z| > 1, therefore fi(n) =
CV"(14+0(1)) (n— o0), C > 0 holds since f(V) = f1(V — k), (4.5)
holds.

Since g(V | 1f,...,15) > fi(V=U), gV | f,....15) > fi(V-U~K)
clearly hold, (4.6) is true.

5. On stable numbers
Theorem 4. © € (1,1) is stable from both sides if and only if

(5.1) d(t) >t , t=p(O))
holds for at least one j. If (5.1) fails, then © is instable from below.
1

PROOF. Assume that (5.1) holds with j = w. Then for a suitable
r > 1 we have

(52) tut1 - bugr > T,

where in general Ty := F(t) =t1...ts. Then u is an even number due to
(1.4),(1.5).
Then, from Lemma 5., applying it with Y = ¢,

(5.3) p(U1(0) = MY = {a: F(o’(a)) < T},

where p = u+r. (5.3) remains true for all those © for which in the notation
t = ¢(1(©)) the relation F,(f) = T, holds: Hence

(5.4) MG = MG, Ui(0) = U1(6)
: o . V5 —1
is valid in an open interval J around ©. We may assume that © < 7

since for bigger ©, U(©) = {0,1}. Then L(O) < 2. The whole set of the
univoque sequences, written as infinite words over {0, 1} can be given by
the relation

(5.5) u®)= {0yu{ttuJa*'vi(e)
k=0
=0
(5.5) it follows immediately from Lemma 1 and from (1.6). (5.4) and (5.5)
implies U(0) = U(©"). The first part of the theorem is proved.
Assume that

(5.6) dt)<t (j=1,2,...)
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holds.

If ¢ is periodic, then the regular expansion of 1 in the base © is finite,
therefore 1 is not univoque with respect to ©, t ¢ M(U(O)). For an
arbitrary ©' < 0O, the sequence t' = ¢(I(0')) is larger than ¢, thus by
(5.6),

)<t (j=0,1,2,...).

Consequently t € M(U(©")).

Assume that ¢ is not periodic. Then o;(t) <t (j =1,2,...). We may
assume that ¢t; > 2. Let a = 11¢. It is not the image of the quasi regular
expansion of any number with respect to O, therefore a ¢ M(U(O)).

The theorem is completely proved.
Let Fy be the set of those © for which ¢ = ¢(I(0)) is periodic and (5.6)
holds. Thus © is unstable from below if ® € F U Fy.

Let © € FUFy and w = sup n.. If n € HY | then e(n) < o(w),
neHY
where £(n) is the regular expansion of 7, and §(w) is the quasi regular
expansion of w (< 1) in the base ©. If n = > e,(n)O* is univoque,
k=1

o0
then so is ; = Y €41(n)OF, and thus 7, = w. Furthermore, in the case
k=1

ei(n) = 1 we have L(0©) —n < w. Since w can be approximated by 7,
hence we have

and even
(k) <Kk (j=0,1,2,...)

holds.

Let us assume first that w = 1. Let n, € He 1, 1 1, s®) = o(e(n,)).
The sequence 11x®*) € Mg)) due to the fact that o7 (11x")) < k = £.
Furthermore, for an arbitrary ©' > O, if ¢’ = ¢(I(0’)), then ¢’ < ¢, and
0?(11k™)) < t' does not hold for at least one v. Thus 11x®) is not
the image of a univoque number with respect to ©’. Consequently © is
unstable from above.

Let now w < 1. Let ©'(> ©) be close to O so that for t’ = ¢(I(0)),
k<t <t Y =y1y2... € Mg)), then 07 (Y) < Kk < t/, consequently

Y e ./\/lg),). Thus one get immediately that U(0’) = U(0), i.e. © is stable
from above.
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6. On the structure of ./\/lg)) for stable numbers

6.1 Due to Lemma 5 and Theorem 4, if © is stable (from both sides),
then

(6.1) MO = {a: Fu(o/(a)) < Ty, j=0,1,2,...},

where T, = t1 ...tx, k is the least index for which ¢,41 ...tx > Tk, holds

for some u < k. Starting from (6.1), we can compute such an Y =y ... y;
for which

(6.2) MO —{a: F(c/(a)<Y,, j=0,1,2,...}.

We may assume furthermore that Y, cannot be substituted by a smaller
sequence Y/ (< Ys), and with a shorter one. If Yy is so chosen then there

is an element (€ ./\/l(@o)) with prefix Y.
Let Y, =vy1...y» (v=1,...,s). If Y, is such a sequence, then

{qurl oo Yutr S Yr

(6.3) 0<u<u+r<s

We assume the fulfilment of (6.3) for the whole section 6.
Notations: If w € Kp,, Z C M, then wZ ={wz : z € Z}.

The union of the sets B,.(C M) is denoted as ) B,.. Let (Mg) =)X be
the set of sequences a determined by the inequalities in the right hand
side of (6.2).

A(w) denotes the length of w. Thus A\(w) = h for w € K.

Let wk:w...l%, and w = ww ..., w" = empty word.
Let Xy := {a : a€ X, Fyu)(a) =w}.

Lemma 9. Let w=r1...7,, 1 < h < s be such a sequence for which
(6.4) Tutl .- Th <Yh_y (u=0,...,h—1)
holds. If u* is the smallest integer w for which ry«41...7, = Yp_yx, then
(6.5) X =7r1. . Tu Xy, _ .-
If (6.4) holds with the strict inequality for every w, then
(6.6) Xy =w.
If (6.4) fails to hold for some u, then X,, is empty.

Proor. Clear. wa e X if X > a=ajas..., and

(6.7)y Tugl - Th Q1. Qg_(h—y) < Ys, u=0,...,h —1



On the structure of univoque numbers 397

holds. If ry41...7, < Yj_y, then u is not a critical value, (6.7), is valid
for each «v. The least critical value is © = v*. It means that wa € X if and
only if Y;,_,+a € X. Thus (6.5), (6.6) holds. The last assertion is obvious.

Lemma 10. Let k be an odd integer.

1. Ifyk =1 and ng,1 = YkYk,1 , S Z 2k — 1, then
(6.8) Xy, , = Xy, =V Xy, = {Y =¥V ... }.
2. Ifyy,>1ands>2k+h(k+1), h>0 and
(6.9) Yorsn(err) = Y Yeo1(ye — 11",
then

h -
(6.10) Xy, =Y Ye(Yioa1(yx — 1)1) Xy, .

j=0
Here Yy is thought to be the empty word.
Proor. 1. Let o € X, & = ajaz..., Fr_1(a) = Yi_1. Then

For_1(a) < Yak—1, whence agagyy...agk—1 < 1Y;_1. Thus ax = 1 and
(Yk:—l z)ak+1 . A2k—1 > Yk—l; i.e. ag41-.-042k—1 = Yk—17 and (68) holds.

2. Assume the fulfilment of (6.9). Let o = ajas--- € X, Fi(a) =Y.
Then agyq ... asgaorr1 > Ye—1(yr — 1)1. Hence agyq...a92r = Yi—1 and
ask > yr — 1. Then either asy = yi, or asy = yr — 1 and asx+1 = 1. In the
first case o = Yy Yy ..., in the second o = Y3, Yi—1(yr — 1)1y and

Frerny—1(a1) > (Vi1 (ye — 1))y

Similarly as above we obtain that either oy = Yy, or a1 =Y%_1(yr—1)1ao,
and in the latter case

F(h—l)(k+1)—1(042) > (Ye—o(yx — 1)1)h_2Yk.
Iterating this argument at most h times we obtain (6.10).

Lemma 11. Let k be even:
1. Ifygy =11, s>2k—2, and

(6.11) Yop—2 = Yi-1Yg-1,
then
(6.12) Xy, , =Xy, =YXy, , ={Vi .}

2. Letyr <wy1, s >2k+ (k+1)h, h >0, and
(6.13) Yors (et vy = Yi(1Yeo1 (v + 1))"Yy



398 Zoltan Daréczy and Imre Katai

then

h

(6.14) Xy, = > Ve(Wi1(yr + 1)) Xy, .
j=0

Proor. It is very similar to that of Lemma 10. We leave it for the
reader.

Remark. If (6.8) or (6.11) holds, then Y can be reduced to Y;. We
can exclude these cases.

6.2. Our purpose is to find an appropriate partition of X, the compo-
nents of which are characterized by the prefixes of their elements, such that
the relations among them allow to define a strongly connected Mauldin
Williams multigraph.

Definition. 1. We say that Yy is of type A if for each k < s there
exists a suitable finite word w for which

(6.15) wX C Xy,

holds.

2. We say that Y; is of type B; if [ is the smallest integer for which
no finite word w exists with the property wX C Xy,.

Theorem 5. Let Y be of type By,. Then, for odd k (6.9), for even k
(6.13) holds.

PROOF. 1. Let k = 1. If s =1, then Xy, = Y1X, i.e. (6.15) holds.
Let s > 2. yo < y; follows from (6.3). If yo = y1, then Y can be reduced
to Y7 in (6.2), but we assumed that Y is the shortest which gives (6.2).
If yo <91 — 2, then Xy, D Xy, (y,41) = ¥1(y2 + 1) X. It remains the case
yo =y1 — 1. If s =2, then Xy, O Xy, = Y2 X. Let s > 3. If y3 > 1, then

51X = Xy,1 € Xy, C Xy, .

Let y3 = 1. If s = 3, then Xy, D Xy, = Y3X. Let s > 4. If y4 < ys then
Xy, 2 Xvyy, = Yayo X. If y4 = y1, then Yj is of type (6.9). It remains the
case Y4 = 9. Continuing this argument, since s is finite, we conclude that
Y is of form (6.9).

2. Let k> 1, k odd, Y, be of type By.
Due to the minimality of k& Xy, , # Xy, , thus there is an [, | # yy,
such that Xy, ,; # (0. Since k odd, therefore | < yi, and so yx > 1.
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From (6.3) we obtain that ¥u41 .- Yk—1 Yk < Yi—w, Yut1 -+ - Yr—1 1 < Yi—u,
which for odd u implies that

Yut1 - Yh—1 < Ygp—u—1 (u 0odd).

Let
o = (Yk—1<yk — 1)1)N .

Let us observe first that

(6.17) Fr(d?(a)) <Yy (j=0,1,2,...)

holds. The sequence 3 := Yy« cannot go through all the tests
(6.18) Fy(0?(8)) < Vs

Assume in contrary that (6.18) holds.

Let A = B(Yi—1(yr—1)1)", r large. Then X A is non empty, fa € Xa.
Hence, similarly as in the proof of Lemma 9, we get that A = AY} with
an appropriate j € {0,1,...,k—1} such that Xa = A1 Xy,. (Yp = empty
word, Xy, = X). Since j < k, therefore w*X C Xy, would imply that
Xy, 2 Xa 2 Ajw* X, thus Y cannot be of type By.

Let v be the smallest j for which (6.18) fails to hold. Since v < k,
taking into account (6.16), we get that v is an even number. Let sg +
1(< s) be the smallest number for which Fy,11(c"(8)) > Yi,41. Then
F,,(cV(B)) = Y,,. Furthermore so > k. We prove that v = 0. If v # 0,
then yy41...yky1...yp = Yi, ie. Y =YY, =Y, Yr_,. Consequently,
if in a sequence X > v = c1ca... ,¢1...Ch—y = Yi_o, k — v is odd,
then Fy(v) < Y implies that cx_p—1...cx = Y,. Hence we obtain that
Xy, , = Xy, ; K —v < k, which contradicts to the minimality of k. We
obtained that v = 0,

Fso(ﬁ) = YS()) Fso+1</8) > Yg0+1 .

Hence we obtain that Fs, () = yk41..-Ys, and Fs,411-k(0) < Yrt1 - -
Yso+1- Let 7 be the largest integer for which r(k + 1) < sy — k. Since
"1 (a) = a, we obtain that Fy,_—r(k+1)(0) = Yktr(kt1)+1- - Yso and
that

Fooi(@) = yip1 - Ysor Fsor1-1() <yig1-- - Ysor1, [=k+r(k+1).

This can occur only if y;41...yso+1 = Yx. This proves the theorem for
odd k.

3. The case k =even can be proved similarly. We omit the details.
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6.3. Assume that Y is of type A. Let W be the set of the following
finite words:
(1) ieW,ifie{l,...,y1 —1}.
(2) forevery k, 1 <k <s,w=yy...yst € W, if yyr1...yri < Y14
(u=0,...,k—1) and i # Y41, ¢ < yp hold;
(3) YseW.
Then X, (w € W) are mutually disjoint sets, Y X, = X.
Assume now that Y is of type By. Then W (= W®)) is defined as
follows:
(1) ieW® ifiec{1,...,y; — 1}
(2) for every j, 1 < j <k, w=yi...y;l for which y,41...y;l <Y1
(u=0,...,5—1) 1 #yj41, | <y hold, let w € W)
(3) Y € W),

Then {X,,,w € W"} is a subdivision of X into the mutually disjoint
sets Xy, .

Now we define the directed multigraph G(W) (resp. G(W®*)) over
the set W (resp. W*)) as the set of nodes by the following relation.
Let first Y; is of type A.

For 1 <1 < y; we have X; =1X, thus

(6.19) Xi= ) iXy,.

weWw
Let z=Y,i e W, 1<r <s. If his the largest number (h = 0 is included
with Xy, = X)) for which z =Y, _,Y}, then

(620) X, = T*]’LXY}L: Z Yo nXw,

weW
A(w)>h

(see Lemma 9). Especially in the case h = 0 we have

(6.21) X.= ) 2 Xy,
weW
Finally we give a formula for Xy.. We have Xy, = Y. “Xy;, where

1<1<y,
the asterisk means that we sum only for those [ for which additionally
Yus1---Ysl < Yspi—y (w=1,2,...,5— 1) holds. Let u be the smallest
value, if any, for which Yur+1---Ys | = Ys+1—u;~ For such an [ we have
Xy, = YquYSH_u;. Such an [ will be called of first kind. If such a
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u does not exist (we say [ is of second kind), then clearly Xy, ; = Yl X.
Consequently

/ 1
(6.22) Xy, =Y YuXy, .+ YiX,
l
l l

where in 3" we sum over the [ of first kind, and in 3" over the others.
At least one of the sums on the right hand side is non-empty.

Since y2 < y1 (y2 = w1 leads to the reducible case s = 2, Yo = y111),
therefore s +1 —u; < s — 1. Thus, by Lemma 9 we obtain that

623 Xv. =Y Y YuX,+> 3 ViX,.
l l

weWw weWw
A(w)>s+1—ufk

Construction of G(W):

Let z € W, z # Y,. Then direct edges to that w € W which occur
in the formula (6.19),(6.20),(6.21) respectively. The edge is labeled by
the corresponding ”coefficient” standing before X,,. For example, if z is
subjected to (6.20), then we direct one edge to a w € W if A(w) > h, and
label this with Y,._;. For z = Y, and w € W we direct as many edges from
z to w as many times X,, occurs in the right hand side of (6.23), and label
them with the corresponding coefficients Yu;« or Y,l.

Theorem 6. If Yy is of type A then G(W) is strongly connected.

PRrROOF. The assertion is an immediate consequence of Lemma 9 and
(6.22), whence we obtain that for each w € W, X,, O 2X with an appro-
priate finite word z holds.

Assume now that Yj if of type B*). The construction of G(W*)) is
similar as earlier. The relations (6.19), (6.20), (6.21) are valid. Instead of
(6.22) we use the relation, (6.10), (6.14). Thus for odd k, from the point
Yy h+ 1 loops are going out which are labelled by
Yi(Ye—1(yr — 1)1)? (j = 0,...,h). Thus from Y} we cannot reach any
element of W)\ {Y;}. Furhermore the graph G(W "))\ {Y}}) is strongly
connected, due to the minimality condition in the definition Bj.

Theorem 7. If Y, is of type B*) then G(W ") \ {Y;}) is strongly
connected.
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Ezample 1. Let Y = Yy = 4213. Then W={1,2, 3,44, 43,4214, 4213}
We have: X; = > iX,,
weW

Xe=4X4=4 Xyg+4 Xyz3+4 Xyo14 +4 Xyo13

Xyz3 =43 X = Z 43 X,
weWw
X4214 =421 X4 =421 X44 + 421 X43 + 421X4214 + 421 X4223

X013 = 4213 X = Z 4213 X, .
weW

We draw G(W) in a simplified form. If z € W is such a node which is

subjected to the formula X, = > 2X"™, then the corresponding edges
weW
are not drawn and the nodes are marked with asterisk.

Then G(W)

Example 2. Let Yo1 = 322(3211)3322333. Computing X we can sub-
stitute Yo; by Yig = 322(3211)3322. Then Y is of type B®). W = W®) =
{1,2,33,321, 322}
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We have: X, = > X, if w=1;2;321. We denote them with z*. Fur-
weW

3 .
thermore X33 =3 X33 +3 X321 +3 X322, X322 = z 322(3211)JX322
j=0
Thus the simplified form of G(W®)) is the following

6.4. Let © + ©2 < 1. If V is an arbitrary subset of H(= Hg), then
L-V={L—-xz:2zeV}CH*"
For some o € X let ¥(a) := (p~!(a),0). If z = ¥(a), y = ¥(o(a)),
then
r=0+---+0"+0"(L—-y).
The assumption © + ©2 < 1 guarantees that if z € [©,1) then y € [©,1).

Thus, if
K = iQ? K7 Q g X?

then
U(K)=0+---+60"+0'(L-¥(Q).

For an arbitrary finite word z we define the similarity f, : R — R recur-
sively, by the following rules:

(1) For z=ie€Nlet fi(z)=0+ - -+0"+ 0L —x).
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(2) If f;,..i, are defined for every j < r and every i; ..., € K, then
firovivipr () = fir (fin..ippn (). It is clear that f; ...4, is a linear
function with contraction factor

r(iy ... i) = @ Fir

Let H(w) := ¥(X,,) defined for finite words w. Then {H(w) | w € W} is
a partition of H(= ¥(X)) into disjoint non-empty compact sets.

The multigraph G(W) (G(W*))) generates the following relation
among them:

(6.24) H(z)=Jf(Hw)) (zeW)

where in the right hand side we sum over all edges leaving z. e denotes
the label of the edge and w the endpoint.

Assume that Y is of type A. Then G(W) is a Mauldin-Williams
graph. The open set condition (due to Moran) clearly satisfied, therefore
the similarity dimension equals to the Hausdorff dimension of the com-
ponents H(z). All of the components have positive finite measures (with
respect to the o-dimensional Hausdorff-measure ). o can be computed
as the only nonnegative real number for which the equation system

(6.25) @7 =) r(e)ql (zeW)

has positive ¢.(z € W) solution.

Let us consider now the case when Y; is of type B*). Assume that
ty > 3. Let m =ty + -+ + t. The set H(Y}) is self-similar, it is the
attractor of the iterated function system

H(Yy) = Ufe(H(Yk)) ;

where in the right hand side we sum over the loops coinciding Y. Thus its
similarity dimension = Hausdorff dimension = A can be computed from

1= Zr(e)k.

e

Since r(e) run over the values @™, 0% ... ©"" for odd k, and over the
values @™ 17(m+2) (j =0,... h) for even k, we have
(6.25)k oda 1=0" +02™ 4 ... @h+tlimA

(625)k even 1= @m)\ + @m)\+(m+2)/\ 4+ .4 @m/\+h(m+2))\

Let XU :={a : Fula) <Y}, U(XW)=H
It is clear that H* C H.
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Let X® = X\ XM, Then X® can be represented as the union of
countable many sets of form z Xy, . Since the A + ¢ dimensional measure
of ¥(2Xy,) is zero for all of these subsets, therefore

fiage(X@) =0 for every &> 0.

Let X\ = X, \ X® defined for w € WF \ V3.
Then X is the union of the disjoint sets Xl(vl) the relation among them
are defined by the strongly connected multigraph G(W \ {Yj}). Thus the
Hausdorff-dimension o of the sets W(X ™), ‘IJ(XS)) can be computed,
o ((X4)) > 0.

If we can prove that o > A, then we conclude that

00 > pe(Xy) >0 if w# Yy, 0 < py(X) < oo.

Let Z={a: a=aas...,0<a;<y1}. Then Z C XM D :=¥(Z) C
H*. Furthermore D is a self-similar set,

its Hausdorff dimension is that n for which

y1—1

1:2@“7

=1

holds. Since 1 < g, if is enough to prove that \ < 7.
But this is clear, if y; > 3. X as a function of h in (6.25) is monoton-
ically increasing. Thus A < Ay, where

@mko

I=1"om 1>1/m-

e, O = (5
, i.e 5

2
Since m > 3, therefore ©* > 3/4, % + (%) > 1, consequently 1 > Ag.

Finally we observe that the above method is applicable even in the
case y; = 2. If s = 1, then this is clear. If s > 2 and y; = y2, then Y3
can be reduced to Yo = 22, and we get that X; =1 X, X5 = 2X,, which
implies that H(©) is a countable set, therefore its Hausdorff dimension
equals to zero. We should consider only the cases when Y is of type B.
Let yo = 1. Assume that Y is of type By. If k = 1, then Y; has the prefix
2(11)"2 with some integer h > 0. Hence we obtain that

X1=1X, Xpuye=2(11)X, (j=0....,h)
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whence

h
U(Xy) = foary (U(X2))
=0

follows. Then W(X5) is a self-similar set, its Hausdorff dimension A can be
computed as the solution of the equation

h
1 = Z O 2+27)

Jj=0

We have 0 < A < 1.
Furthermore 0 < p(¥(X2)) < 0co. Since

x = {17+ 301,
=1

therefore ua ((X1)) =y (B(1) + 52 i (W(11X2) =01 32 ©s (¥(Xa),

=1
thus 0 < p(¥(X7)) < oo.
Assume that k > 2. If kis odd and y, = 1, or if k is even and yi, = y1 (= 2),
then Y is of form (6.8) or (6.11) respectively, thus it is reducible. These
cases can be excluded.

Let k(> 3) be odd. Then k is at least so large then the index of the
second occurence of 2 in y1y2.... Thus Yy, =2 17"2... and k > r + 2.
Since (6.9) holds, therefore m := y; + -+ + yx > r + 4. The Hausdorff
dimension A of ¥(Xy, ) can be computed from the equation

(6.26) O™ 4 ...y @mAtL) 1

Let X' = {a : F.i2(07(a)) < 2172}. If we prove that the Hausdorff
dimension of ¥(X’) is larger than A, then we can compute it from the
Mauldin-Williams graph omitting the node Y.

Let X" be the attractor of

(6.27) X"=>3 " 21%x".
2ll:<01"

Then X” C X’. The dimension o of ¥(X") is obtained from
(6.28) 1=) 72,

=0
2l<r

o < X\ would imply that (£ =)07 > ©*(=n). From (6.26), (6.28) we can
get immediately that it is impossible if m > 6, i.e. if r > 2. It remains the
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case r = 1.

Let k = even of form (6.13). Then y, = 1. If 2 172 is a prefix in Yj, then
k>r—1 and som =1y; +---+ yx > r. Now the Hausdorff dimension \
of U(Xy,) is computed from the equation,

(6.29) O™ L @MAT(M+2)A 4 4 gmATh(m+)A _ 1

If r is even, then Y is of type B(Y) which was considered earlier. Let
r be odd. Let us consider the set X" defined by (6.27). The Hausdorff
dimension of W(X") is given as that o for which (6.28) holds. Let £ = ©7,
n = ©*. Let r > 1. The smallest value of 7 is getting by for h — oo, i.e.
for 1 = n™ + n?"+2, Furthermore, from (6.28), 1 = £2 + ¢+ + ... 4 ¢+
and this implies that £ < n for m > 3.

Finally we consider the case when r = 1, k =even, Y is of form B,
If k = 2, then Y is of form (6.13), i.e.

Yanie = 21(121)722, and F3(Y,) # 212.

Then k > 4. Consequently either & = 4 and Yz 5, = 2121(12122)"2121
for some h > 0 or k > 6.

Let k=4, WO ={1,22211}, X’ = X| + X}, + X4,, defined by

X! =1X', XY, = 2XY, X}, = 211X".

The Hausdorff-dimension o of ¥(X’) can be computed from: ¢f = O9R,
45 = ©* (R—¢q7), ¢35, = ©* R, R=qf + ¢35, +¢51; (> 0), i.e. it is the
solution of the equation 1 = ©7 +02° — 03 4 ©%7. Since m = 6, similarly
as above we deduce that o > A. The case k > 6 is similar, the proof is left
to the reader.

6.5. Now we summarize our result for the computation of the Haus-
dorff dimension of H.

Assume that Y; defining (6.2) cannot be further reduced. Then we
have:

1. If Yy is of type A, then the Hausdorff dimension of Hg equals to the
similarity dimension of the Mauldin-Williams graph G(W), G(W) is
strongly connected.

2. Assume that Y; is of type B*) and that Yaj40 # 2 122 (j =
0,1,...).

Then the Hausdorff-dimension ¢ of U(X) is the same as the similarity
dimension of (the strongly connected) graph G(W | {Y%}).
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