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On the structure of univoque numbers

By ZOLTÁN DARÓCZY (Debrecen)∗ and IMRE KÁTAI (Budapest, Pécs)∗∗

1. Introduction

We shall continue our investigation in [1] on univoque sequences gen-
erated by Θ-adic expansion of real numbers. A method for the compu-
tation of the Hausdorff dimension of the set of univoque numbers will be
presented.

Let
1
2
≤ Θ < 1, L = L(Θ) = Θ + Θ2 + · · · = Θ

1−Θ
, λ = ΘL.

For ε = (ε1, ε2, . . . ) ∈ {0, 1}N let

〈
ε, Θ

〉
:=

∞∑
n=1

εnΘn.

A sequence ε is said to be univoque with respect to Θ if
〈
ε, Θ

〉
=

〈
δ,Θ

〉
,

δ ∈ {0, 1}N implies that ε = δ, i.e that εj = δj (j = 1, 2, . . . ).
It is known that for any x ∈ [0, L(Θ)] there exists an ε ∈ {0, 1}N such

that x =
〈
ε, Θ

〉
, namely this is true for εn = εn(x), where εn(x) is defined

by induction on n, as follows:

(1.1) εn(x) =





1 if
n−1∑
i=1

εi(x)Θi + Θn ≤ x,

0 if
n−1∑
i=1

εi(x)Θi + Θn > x.

The expansion
〈
ε(x), Θ

〉
= x, ε(x) = (ε1(x), . . . ) is called the regular

expansion of x.
∗This work was supported by the National Science Foundation Grant OTKA 1652.
∗∗The research has been supported by GO WEST grant and the OTKA 2153.
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Every x ∈ (0, L(Θ)] can be expanded by the digits, δn = δn(x) (n =
1, 2, . . . ) as well, where they are defined from

(1.2) δn(x) =





1 if
n−1∑
i=1

δi(x)Θi + Θn < x,

0 if
n−1∑
i=1

δi(x)Θi + Θn ≥ x.

The expansion x =
〈
δ(x),Θ

〉
, δ(x) = (δ1(x), . . . ) is called the quasi-

regular expansion of x.
The expansions ε(x), δ(x) are the same except, if the regular expansion

of x is finite (i.e. if εn(x) = 0 for all large n).
Let R(Θ) = {ε(x) | x ∈ [0, L]}, R1(Θ) = {ε(x) | x ∈ [0, 1)}.

Let l = l(Θ) = (l1, l2, . . . ) ∈ {0, 1}N be the quasi-regular expansion of 1,
i.e. δj(1) = lj (j = 1, 2, . . . ). If 1 has a finite regular expansion in the base
Θ, and

〈
ε(1), Θ

〉
= s1Θ + · · ·+ skΘk, sk = 1, then δ(1) = (s1, s2, . . . , sk −

1, 0, s1, . . . , sk − 1, 0 . . . ), i.e. δ(1) is a periodic sequence with period k.
W. Parry [2] gave a simple characterization of the sequences a =

{a1, a2, . . . } ∈ {0, 1}N of R1(Θ) : a ∈ R1(Θ), if and only if

(1.3) {ar, ar+1, . . . } < {l1, l2, . . . } (r = 1, 2, . . . )

holds, in the sense of the lexicographic ordering.
He proved furthermore that l ∈ {0, 1}N is the regular expansion of 1

for a suitable Θ ∈ [ 12 , 1), if and only if

l1 = 1 and

{lk+1, lk+2, . . . } < {l1, l2, . . . }(1.4)
k = 1, 2, . . .

holds.
One can prove simply that the periodic sequence l ∈ {0, 1}N with

l1 = 1 is the quasi-regular expansion of 1 with a suitable Θ ∈ [ 12 , 1) if and
only if

(1.5) {lk, lk+1, . . . } ≤ {l1, l2, . . . } (k = 1, 2, . . . )

holds. If (1.5) holds, then with the corresponting Θ as base, the regular
expansion of 1 is finite. In [1] we proved the following assertions (Theo-
rem 2.1 and 2.4 which are formulated now as Lemma 1 and 2).

Lemma 1. The sequence ε ∈ {0, 1}N is univoque with respect to Θ if
and only if both of the sequences ε, 1− ε ∈ R(Θ), where 1 = {1, 1, . . . }.

Let U(Θ) be the set of univoque sequences.
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Lemma 2. If 1
2 ≤ Θ′ < Θ < 1, then U(Θ) ⊆ U(Θ′).

Definition. The number Θ ∈ ( 1
2 , 1) is said to be stable from below, if

U(Θ) = U(Θ′) holds for some Θ′ < Θ. Similarly, Θ is stable from above,
if U(Θ′′) = U(Θ) holds for some Θ′′ > Θ.

Remark. This definition is somewhat different from that was given
in [1].
Let H(= HΘ), H∗(= H∗

Θ) be the set of univoque numbers (with respect
to Θ) on the intervals [Θ, 1), [0, 1), respectively. It is clear that

(1.6) H∗ = {0} ∪
∞⋃

n=0

ΘnH .

The set of univoque numbers x ∈ [1, L] can be given as (L−H∗) ∩ [1, L].
Let

(1.6) U1(Θ) := {ε ∈ U(Θ),
〈
ε, Θ

〉 ∈ H},
i.e. U1(Θ) is the set of those univoque sequences for which the represented
number

〈
ε, Θ

〉
falls into [Θ, 1).

2. A new notation for univoque sequences

First of all, let Kh denote the set of words of length h over N, and M
be the set of infinite words over N, i.e. let

Kh := {m1m2 . . . mh;mj ∈ N}
M := {m = m1m2 . . . ;mj ∈ N} .

Let Fh : M→ Kh be the mapping Fh(m) = m1 . . . mh; let σ be the shift
operator acting as σ(m1m2 . . . ) = m2m3 . . . .
Let us define the ordering relations in Kh and in M by the following
relations:
(1) in K1(= N) : the common ordering
(2) in K2 : n1n2 < m1m2 holds if n1 < m1, or if

n1 = m1 and n2 > m2 .

(h) in Kh : n1n2 . . . nh < m1 . . .mh, if

n1 < m1, or if n1 = m1 and n2 . . . nh > m2 . . .mh .

In other words, if n1 . . . nh 6= m1 . . . mh and k is the smallest index for
which nk 6= mk, then
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for odd k : n1 . . . nh < m1 . . . mh, if nk < mk

for even k : n1 . . . nh < m1 . . .mh, if nk > mk.
Let m,n be two distinct words in M. We say shat m < n, if Fh(m) 6=
Fh(n) implies that Fh(m) < Fh(n) in Kh. It is clear that this definition is
correct.
Let E ⊆ {0, 1}N be the set of those sequences ε = {ε1, ε2, . . . } in which
both of 0 and 1 occurs infinitely often, and ε1 = 1. Let ϕ : E → M be
the one to one mapping defined as follows: Let ε (considered as an infinite
word over {0, 1}) of form 1a10b11a20b2 . . . . Then ϕ(ε) = a1b1a2b2 . . . .

It is clear that, if ε, δ ∈ E, then ε < δ holds in E (in the sense of the
lexicograpic ordering) if and only if ϕ(ε) < ϕ(δ) in M.

We have U1(Θ) ⊆ E. Let M(0) = M(0)
Θ = ϕ(U1(Θ)).

Let furthermore

t = t1t2 · · · = ϕ(l(Θ)),

where l(Θ) is the sequence getting as the quasiregular expansion of 1 in
the base Θ.

From the Parry condition and Lemma 1 we have

Lemma 3. α ∈M belongs to M(0)
Θ if and only if

(2.1) σl(α) < t (l = 0, 1, 2, . . . ) .

Proof. Clear.

Let Y = y1y2 . . . ∈M, Yh := Fh(Y ) = y1 . . . yh;

S(Y ) := {α ∈M : σl(α) < Y, l = 0, 1, 2, . . . },(2.2)

Uk(Y ) := {α ∈M : Fk(σl(α)) < Yk, l = 0, 1, 2, . . . },(2.3)

Vk(Y ) := {α ∈M : Fk(σl(α)) ≤ Yk, l = 0, 1, 2, . . . }.(2.4)

It is clear that U1(Y ) ⊆ U2(Y ) ⊆ . . . and V1(Y ) ⊇ V2(Y ) ⊇ . . . .

Lemma 4. For each k, l ∈ N we have

(2.5) Uk(Y ) ⊆ S(Y ) ⊆ Vl(Y ) .

Proof. Clear.
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Lemma 5. Let p be the smallest integer, if any, for which there exist
u, r ≥ 1, u + r = p such that

(2.6) yu+1 . . . yu+r > Yr

in the sense of ordering introduced in Kr. Then

(2.7) S(Y ) = Up(Y ) .

Proof. If there is an α ∈ Vu+r(Y ) \ Uu+r(Y ), then Fp(σj(α)) = Yp

holds for some j. Then

Fr(σj+r(α)) > Yr,

i.e. α /∈ Vr(Y ). Hence Vu+r(Y ) = Uu+r(Y ), and (2.7) follows from (2.5).

Lemma 6. If y2 > y1, then

(2.8) S(Y ) = {α = a1a2 . . . | 1 ≤ aj ≤ y1 − 1} .

Let y2 = y1 and denote z = y1y1y1 . . . . If z ≥ Y , then S(Y ) as in (2.8). If
z < Y , then

S(Y ) = {α = a1a2 . . . | 1 ≤ aj ≤ y1 − 1, j = 1, 2, . . . }∪(2.9)

∪{α = βz | β = b1 . . . bh, 1 ≤ bj ≤ y1 − 1, h = 0, 1, 2, . . . }
(h = 0 is for the empty word!)

Proof. The first assertion comes from Lemma 5 immediately. As-
sume that y2 = y1. If α ∈ S(Y ), and the first occurrence of y1 in the
sequence is ah+1 = y1, then α = a1a2 . . . ahz, thus σh(α) = z, σh(α) < Y ,
this may occur only if z < Y . The further part of the lemma is clear.

Lemma 7. Let t = t1t2 · · · = ϕ(l(Θ)), and assume that t2 ≥ t1. Then

M(0)
Θ = {α = a1a2 . . . | 1 ≤ aj ≤ t1 − 1, j = 1, 2, . . . }.

Proof. The assertion immediately follows from Lemma 4 and 6. The
only critical element is z = t1t1 . . . in the case t2 = t1. Since t comes from a
quasi regular expansion of 1, therefore t2j+1 ≤ t1 and in the case t2j+1 = 1
t2j+2 > t2 = t1, since σ2j(t) ≤ t. If tk = t1 for each k, then z = t, and
z < t does not hold. Let k be the smallest index for which tk 6= t1. If k
odd, then tk < t1, but then z > t. If k even, then tk > t1, and similarly
we have z > t. Thus z /∈M(0)

Θ .
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3. The structure of M
(0)
Θ in the case t2 ≥ t1

Theorem 1. Assume that the condition stated in Lemma 7 holds.
Then H is self-similar, it is the attractor of the iterated function system

(3.1) H =
t1−1⋃
a1=1

t1−1⋃
a2=1

fa1,a2(H) ,

where fa1,a2(x) = Θa1 +Θa1+a2x. The components on the right hand side
of (3.1) are disjoint sets.
Let ξ denote the positive root of the polynomial xt1−1 + · · ·+ x− 1; let

(3.2) s :=
log 1/ξ

log 1/Θ
(< 1) .

Then the Hausdorff dimension of H equals to its similarity dimension,
= s.

Proof. (3.1) is a consequence of Lemma 7. From the definition fol-
lows that the components are disjoint. H is closed and bounded. The
further assertion follows from a theorem of Hutchinson (see G. Edgar
[3]).

4. On the set F

Let F denote the set of those Θ for which 1 is univoque with respect to
Θ. If the regular expansion of 1 is finite, then clearly Θ /∈ F , since then 1
has another expansion. If Θ ∈ F , t = ϕ(l(Θ)), then

〈
ϕ−1(σj(t)),Θ

〉 ∈ HΘ

for each j ≥ 1, therefore

(4.1)j σj(t) < t (j = 1, 2, . . . )

holds.
Let now t ∈ M be an arbitrary sequence for which (4.1)j (j = 1, 2, . . . )
holds. The fulfilment of the conditions (4.1)2l (l = 1, 2, . . . ) guarantee the
existence of a Θ for which ϕ−1(t) = l(Θ), Θ ∈ (1

2 , 1). Then (4.1)j implies
that

〈
ϕ−1(σj(t)), Θ

〉 ∈ H for j ≥ 1 (see Lemma 3), thus 1 is univoque
with respect to Θ. We have proved

Theorem 2. t ∈M is the image of the regular (quasi-regular) expan-
sion of 1 in the base of a suitable Θ ∈ F if and only if (4.1)j (j = 1, 2, . . . )
holds.
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Theorem 3. The Lebesgue measure of F is zero, its Hausdorff dimen-
sion is 1.

Proof. I. In [1] we proved that Θ ∈ F implies that Θ ≤
√

5− 1
2

.

Let Θ and Θ′ be such numbers for which l(Θ) = {l1, . . . , lk, lk+1, . . . },
l(Θ′) = {l1, . . . , lk, l′k+1, l

′
k+2, . . . , } lk+1 = 0, l′k+1 = 1.

Let P1(z) =
∞∑

j=1

ljz
j − 1, P2(z) =

k∑
j=1

ljz
j +

∞∑
j=k+1

l′jz
j − 1. Since

P1(Θ) = 0, P2(Θ′) = 0, P2(Θ) = |P2(Θ)−P1(Θ)| ≤ cΘk, P2(Θ)−P2(Θ′) =
= (Θ − Θ′)P ′′2 (ξ), ξ ∈ (Θ, Θ′), and (0 <)c1 < P ′′2 (ξ) < c2 with numerical
constants c1, c2, therefore

(4.2) 0 < Θ−Θ′ < c3Θk .

Let FK = {Θ | Θ ∈ F , t1 = K}. If Θ ∈ FK , then
1 = Θ + · · · + Θt1 + Θt1+t2+1 + · · · , t1 = K, t2 ≤ K, consequently
ΘK = max

Θ∈FK

Θ satisfies

(4.3)
K∑

j=1

Θj
K ≤ 1−Θ2K+1

K .

Let R be an arbitrary large integer. Let us classify the elements of
FK according to the sequence t1, t2, . . . , tR. The distance of two numbers,
Θ1, Θ2 ∈ FK with FR(ϕ(Θ1)) = FR(ϕ(Θ2)) = t1t2 . . . tR is less than
c3Θt1+···+tR

K , due to (4.2). Thus FK can be covered by finitely many
intervals the total length of which is less than

c3

( K∑

j=1

Θj
K

)R

≤ c3

(
1−Θ2K+1

K

)R
.

The right hand side tends to zero as R → ∞. Thus meas (FK) = 0,
whence meas (F) =

∑
meas (FK) = 0. The first part of the theorem is

proved.

II. Let F (0)
K be the subset of FK defined by the conditions F (0)

K =
{Θ | ϕ(l(Θ)) = t1t2 . . . ; t1 = K; 1 ≤ tj ≤ K − 1, j ≥ 2}. We shall show
that for any given σ < 1 there is a K such that the Hausdorff dimension
of F (0)

K is larger than σ.
Let Θmin, Θmax denote the smallest and the largest elements of F (0)

K , re-
spectively. Assume that K ≥ 3. Then ϕ(l(Θmin))=K 1 (K−1)1(K−1) . . . .
Let ΨK be the positive root of the polynomial 1− (z + · · ·+ zK−1). Then
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Θmin < Θmax < ΨK , furthermore ΨK−Θmin < c ΨK
K holds with a suitable

numerical constant c. The last inequality follows from (4.2).
Let Θ′ < Θ, Θ′,Θ ∈ F (0)

K with l(Θ) = l1l2 . . . , l(Θ′) = l′1l
′
2 . . . such that

ls = 0, ls+1 = 1 and lj = l′j for 1 ≤ j ≤ s. Assume that s > K. Then
l1Θ + · · ·+ ls−1Θs−1 + Θs > 1, l1Θ′ + · · ·+ ls−1 Θ′s−1 + Θ′s < 1−Θ′s+K .
The polynomial h(z) := l1z + · · · + ls−1z

s−1 + zs satisfies (1 ≤)h′(z) ≤ 9
for z ≤ 0, 9, say, whence

Θ′s+K < h(Θ)− h(Θ′) = (Θ−Θ′)h′(ξ) , ξ ∈ (Θ′, Θ)

thus

(4.4) Θ−Θ′ ≥ 1
9
Θ′s+K ≥ 1

9
·Θs+K

min .

Let f(V ) be the number of the sequences l1, . . . , lV which occur as the
first V elements of l(Θ) = {l1, l2, . . . } for some Θ ∈ F (0)

K . For V > U
and given l∗1, . . . l

∗
U let g(V | l∗1, . . . , l

∗
U ) be the number of the distinct

l1, . . . , lV occuring in the beginning of l(Θ) = {l1, l2, . . . } for which the
first U elements are fixed, l1 = l∗1, . . . , lU = l∗U .

Lemma 8. With suitable positive constants c(K), c1(K), c2(K) we
have

f(V ) = c(K)Ψ−V
K (1 + o(1)) as V →∞ ,(4.5)

c1(K) < g(V | l∗1, . . . , l∗U )ΨV−U
K < c2(K) if U < V .(4.6)

First we continue the proof of the theorem assuming the validity of
Lemma 8, then we prove it.

Assume in contrary that dimension (F (0)
K ) < σ. Then, for arbitrary

choice of ε, δ > 0, there is a covering F (0)
K ⊆

∞⋃
j=1

Ej , such that diam Ej < δ

and ∞∑

j=1

(diamEj)σ < ε .

Then there is such a covering with open intervals Ij , and even we may
assume that the set of lengths of Ij belongs to the set {Θr

min | r = 1, 2, . . . }.
F (0)

K is a closed set. Let F (0)
K ⊆ ⋃

Ij ,

(4.7)
∞∑

j=1

(diam Ij)σ < ε, diam Ij < δ .
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From the Heine-Borel theorem we obtain that there is a finite subcover,

F (0)
K ⊆

p⋃
j=1

Ij . Let Mr be the number of intervals Ij with length Θr
min.

Let ro =
[ log 1/δ

log 1/Θmin

]
, and r1 be the largest j for which Mj 6= 0. Then

Mj = 0 for j < ro. We have

(4.8)
p∑

j=1

(diam Ij)σ ≤
∑

ro≤j≤r1

MjΘ
jσ
min < ε .

Let V > r1 and F (0)
K (l1, . . . , lV ) be the set of those Θ ∈ F (0)

K , for which
the first V elements of l(Θ) is the given sequence l1, . . . , lV .

If Θ1, Θ2 ∈ F (0)
K are covered with the same interval Ij of length Θr

min,
then Θr

min > |Θ1 − Θ2| and by (4.4) we obtain that the first r − K − 4
digits of l(Θ1) and of l(Θ2) coincide.
Due to (4.6), the number of that sets among F (0)

K (l1, . . . , lV ) which have
nonempty intersection with Ij , is less than

c2(K)Ψr−K−4
K ·Ψ−V

K .

Since any of F (0)
K (l1, . . . , lV ) has a nonempty intersection with at least one

Ij , therefore
f(V ) ≤ c2(K)Ψ−V

K

∑

ro≤r≤r1

MrΨr−K−4
K .

Then, from (4.5), taking the limit V →∞, we have

(A :=)
1

ΨK+4
K

c(K)
c2(K)

≤
∑

ro≤r≤r1

Mr ·Ψr
K .

From (4.8) it follows that Mr < εΘ−rσ
min , thus

(4.9) A ≤ ε
∑

ro≤r<r1

( ΨK

Θσ
min

)r

.

If K is large enough, then ΨK < Θσ
min. For such choice of K the inequality

(4.9) cannot be held if ε is small enough. This finishes the proof of the
theorem.

Proof of Lemma 8. Let f1(n) be the number of that sequences in
{0, 1}n, which do not contain K consecutive 1′s and 0′s.

Then f1(n) = f1(n − 1) + · · · + f1(n − (K − 1)) for n ≥ K. The
characteristic polynomial xK−1 − (xK−2 + · · · + x + 1) of this recursion
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has only one root, namely Ψ−1
K in the domain |z| ≥ 1, therefore f1(n) =

CΨ−n
K (1 + σ(1)) (n → ∞), C > 0 holds since f(V ) = f1(V − k), (4.5)

holds.
Since g(V | l∗1, . . . , l∗U ) ≥ f1(V −U), g(V | l∗1, . . . , l∗U ) ≥ f1(V −U−K)

clearly hold, (4.6) is true.

5. On stable numbers

Theorem 4. Θ ∈ ( 1
2 , 1) is stable from both sides if and only if

(5.1) σj(t) > t , t = ϕ(l(Θ))

holds for at least one j. If (5.1) fails, then Θ is instable from below.

Proof. Assume that (5.1) holds with j = u. Then for a suitable
r ≥ 1 we have

(5.2) tu+1 . . . tu+r > Tr ,

where in general Ts := Fs(t) = t1 . . . ts. Then u is an even number due to
(1.4), (1.5).

Then, from Lemma 5., applying it with Y = t,

(5.3) ϕ(U1(Θ)) = M(0)
Θ = {α : Fp(σj(α)) < Tp} ,

where p = u+r. (5.3) remains true for all those Θ̃ for which in the notation
t̃ = ϕ(l(Θ̃)) the relation Fp(t̃) = Tp holds: Hence

(5.4) M(0)

Θ̃
= M(0)

Θ , U1(Θ) = U1(Θ̃)

is valid in an open interval J around Θ. We may assume that Θ ≤
√

5− 1
2

,

since for bigger Θ, U(Θ) = {0, 1}. Then L(Θ) < 2. The whole set of the
univoque sequences, written as infinite words over {0, 1} can be given by
the relation

(5.5) U(Θ) = {0} ∪ {1} ∪
∞⋃

k=0
l=0

(1k0lU1(Θ)) .

(5.5) it follows immediately from Lemma 1 and from (1.6). (5.4) and (5.5)
implies U(Θ) = U(Θ′). The first part of the theorem is proved.
Assume that

(5.6) σj(t) ≤ t (j = 1, 2, . . . )
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holds.
If t is periodic, then the regular expansion of 1 in the base Θ is finite,

therefore 1 is not univoque with respect to Θ, t /∈ M(U(Θ)). For an
arbitrary Θ′ < Θ, the sequence t′ = ϕ(l(Θ′)) is larger than t, thus by
(5.6),

σj(t) < t′ (j = 0, 1, 2, . . . ) .

Consequently t ∈M(U(Θ′)).
Assume that t is not periodic. Then σj(t) < t (j = 1, 2, . . . ). We may

assume that t1 ≥ 2. Let α = 11t. It is not the image of the quasi regular
expansion of any number with respect to Θ, therefore α /∈M(U(Θ)).

The theorem is completely proved.
Let F0 be the set of those Θ for which t = ϕ(l(Θ)) is periodic and (5.6)
holds. Thus Θ is unstable from below if Θ ∈ F ∪ F0.

Let Θ ∈ F ∪ F0 and w = sup
η∈H0

Θ

η.. If η ∈ H
(0)
Θ , then ε(η) ≤ δ(w),

where ε(η) is the regular expansion of η, and δ(w) is the quasi regular

expansion of w (≤ 1) in the base Θ. If η =
∞∑

k=1

εk(η)Θk is univoque,

then so is ηl =
∞∑

k=1

εk+l(η)Θk, and thus ηl = w. Furthermore, in the case

εl(η) = 1 we have L(Θ) − ηl ≤ w. Since w can be approximated by η,
hence we have

σj(ϕ(ε(η))) < κ = ϕ(δ(w)) ,

and even
σj(κ) ≤ κ (j = 0, 1, 2, . . . )

holds.
Let us assume first that w = 1. Let ην ∈ HΘ ην ↑ 1, κ(ν) = ϕ(ε(ην)).

The sequence 11κ(ν) ∈ M(0)
Θ due to the fact that σj(11κ(ν)) < κ = t.

Furthermore, for an arbitrary Θ′ > Θ, if t′ = ϕ(l(Θ′)), then t′ < t, and
σ2(11κ(ν)) < t′ does not hold for at least one ν. Thus 11κ(ν) is not
the image of a univoque number with respect to Θ′. Consequently Θ is
unstable from above.

Let now w < 1. Let Θ′(> Θ) be close to Θ so that for t′ = ϕ(l(Θ′)),
κ < t′ < t. If Y = y1y2 . . . ∈ M(0)

Θ , then σj(Y ) ≤ κ < t′, consequently
Y ∈M(0)

Θ′ . Thus one get immediately that U(Θ′) = U(Θ), i.e. Θ is stable
from above.
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6. On the structure of M(0)
Θ for stable numbers

6.1 Due to Lemma 5 and Theorem 4, if Θ is stable (from both sides),
then

(6.1) M(0)
Θ = {α : Fk(σj(α)) < Tk , j = 0, 1, 2, . . . } ,

where Tk = t1 . . . tk, k is the least index for which tu+1 . . . tk > Tk−u holds
for some u ≤ k. Starting from (6.1), we can compute such an Y = y1 . . . ys

for which

(6.2) M(0)
Θ = {α : Fs(σj(α)) ≤ Ys , j = 0, 1, 2, . . . } .

We may assume furthermore that Ys cannot be substituted by a smaller
sequence Y ′

s (< Ys), and with a shorter one. If Ys is so chosen then there
is an element α(∈M(0)

Θ ) with prefix Ys.
Let Yv = y1 . . . yv (v = 1, . . . , s). If Ys is such a sequence, then

(6.3)
{

yu+1 . . . yu+r ≤ Yr

0 ≤ u < u + r ≤ s

We assume the fulfilment of (6.3) for the whole section 6.
Notations: If w ∈ Kh, Z ⊆M, then wZ = {wz : z ∈ Z}.
The union of the sets Br(⊆ M) is denoted as

∑
Br. Let (M(0)

Θ =)X be
the set of sequences α determined by the inequalities in the right hand
side of (6.2).
λ(w) denotes the length of w. Thus λ(w) = h for w ∈ Kh.
Let wk = w . . . w̆

k

, and wN = ww . . . , w0 = empty word.
Let Xw := {α : α ∈ X, Fλ(w)(α) = w}.

Lemma 9. Let w = r1 . . . rh, 1 ≤ h < s be such a sequence for which

(6.4) ru+1 . . . rh ≤ Yh−u (u = 0, . . . , h− 1)

holds. If u∗ is the smallest integer u for which ru∗+1 . . . rh = Yh−u∗ , then

(6.5) Xw = r1 . . . ru∗XYh−u∗ .

If (6.4) holds with the strict inequality for every u, then

(6.6) Xw = w .

If (6.4) fails to hold for some u, then Xw is empty.

Proof. Clear. wα ∈ X if X 3 α = a1a2 . . . , and

(6.7)u ru+1 . . . rh a1 . . . as−(h−u) ≤ Ys, u = 0, . . . , h− 1
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holds. If ru+1 . . . rh < Yh−u, then u is not a critical value, (6.7)u is valid
for each α. The least critical value is u = u∗. It means that wα ∈ X if and
only if Yh−u∗α ∈ X. Thus (6.5), (6.6) holds. The last assertion is obvious.

Lemma 10. Let k be an odd integer.
1. If yk = 1 and Y2k−1 = YkYk−1 , s ≥ 2k − 1, then

(6.8) XYk−1 = XYk
= YkXYk

= {Y Nk = YkYk . . . } .

2. If yk > 1 and s ≥ 2k + h(k + 1), h ≥ 0 and

(6.9) Y2k+h(k+1) = Yk (Yk−1(yk − 1)1)hYk ,

then

(6.10) XYk
=

h∑

j=0

Yk(Yk−1(yk − 1)1)jXYk
.

Here Y0 is thought to be the empty word.

Proof. 1. Let α ∈ X, α = a1a2 . . . , Fk−1(α) = Yk−1. Then
F2k−1(α) ≤ Y2k−1, whence akak+1 . . . a2k−1 ≤ 1Yk−1. Thus ak = 1 and
(Yk−1 ≥)ak+1 . . . a2k−1 ≥ Yk−1, i.e. ak+1 . . . a2k−1 = Yk−1, and (6.8) holds.

2. Assume the fulfilment of (6.9). Let α = a1a2 · · · ∈ X, Fk(α) = Yk.
Then ak+1 . . . a2ka2k+1 ≥ Yk−1(yk − 1)1. Hence ak+1 . . . a2k = Yk−1 and
a2k > yk − 1. Then either a2k = yk, or a2k = yk − 1 and a2k+1 = 1. In the
first case α = YkYk . . . , in the second α = YkYk−1(yk − 1)1α1 and

Fh(k+1)−1(α1) ≥ (Yk−1(yk − 1)1)h−1Yk .

Similarly as above we obtain that either α1 = Ykα2, or α1=Yk−1(yk−1)1α2,
and in the latter case

F(h−1)(k+1)−1(α2) ≥ (Yk−2(yk − 1)1)h−2Yk .

Iterating this argument at most h times we obtain (6.10).

Lemma 11. Let k be even:
1. If yk = y1, s ≥ 2k − 2, and

(6.11) Y2k−2 = Yk−1Yk−1 ,

then

(6.12) XYk−1 = XYk
= Yk−1XYk−1 = {Y Nk−1} .

2. Let yk < y1, s ≥ 2k + (k + 1)h, h ≥ 0, and

(6.13) Y2k+(k+1)h = Yk(1Yk−1(yk + 1))hYk ,
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then

(6.14) XYk
=

h∑

j=0

Yk(1Yk−1(yk + 1))jXYk
.

Proof. It is very similar to that of Lemma 10. We leave it for the
reader.

Remark. If (6.8) or (6.11) holds, then Ys can be reduced to Yk. We
can exclude these cases.

6.2. Our purpose is to find an appropriate partition of X, the compo-
nents of which are characterized by the prefixes of their elements, such that
the relations among them allow to define a strongly connected Mauldin
Williams multigraph.

Definition. 1. We say that Ys is of type A if for each k ≤ s there
exists a suitable finite word w for which

(6.15) wX ⊆ XYk

holds.

2. We say that Ys is of type Bl if l is the smallest integer for which
no finite word w exists with the property wX ⊆ XYl

.

Theorem 5. Let Ys be of type Bk. Then, for odd k (6.9), for even k
(6.13) holds.

Proof. 1. Let k = 1. If s = 1, then XY1 = Y1X, i.e. (6.15) holds.
Let s ≥ 2. y2 ≤ y1 follows from (6.3). If y2 = y1, then Ys can be reduced
to Y1 in (6.2), but we assumed that Ys is the shortest which gives (6.2).
If y2 ≤ y1 − 2, then XY1 ⊇ XY1(y2+1) = y1(y2 + 1)X. It remains the case
y2 = y1 − 1. If s = 2, then XY1 ⊇ XY2 = Y2X. Let s ≥ 3. If y3 > 1, then

Y21X = XY21 ⊆ XY2 ⊆ XY1 .

Let y3 = 1. If s = 3, then XY1 ⊇ XY3 = Y3X. Let s ≥ 4. If y4 < y2 then
XY1 ⊇ XY3y2 = Y3y2X. If y4 = y1, then Ys is of type (6.9). It remains the
case y4 = y2. Continuing this argument, since s is finite, we conclude that
Ys is of form (6.9).

2. Let k > 1, k odd, Ys be of type Bk.
Due to the minimality of k XYk−1 6= XYk

, thus there is an l, l 6= yk

such that XYk−1l 6= ∅. Since k odd, therefore l < yk, and so yk > 1.
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From (6.3) we obtain that yu+1 . . . yk−1 yk ≤ Yk−u, yu+1 . . . yk−1 l ≤ Yk−u,
which for odd u implies that

yu+1 . . . yk−1 < Yk−u−1 (u odd) .

Let
α = (Yk−1(yk − 1)1)N .

Let us observe first that

(6.17) FK(σj(α)) < Yk (j = 0, 1, 2, . . . )

holds. The sequence β := Ykα cannot go through all the tests

(6.18) Fs(σj(β)) ≤ Ys

Assume in contrary that (6.18) holds.
Let4 = β(Yk−1(yk−1)1)r, r large. Then X4 is non empty, βα ∈ X4.

Hence, similarly as in the proof of Lemma 9, we get that 4 = 41Yj with
an appropriate j ∈ {0, 1, . . . , k− 1} such that X4 = 41XYj . (Y0 = empty
word, XY0 = X). Since j < k, therefore w∗X ⊆ XYj would imply that
XYk

⊇ X4 ⊇ 41w
∗X, thus Ys cannot be of type Bk.

Let v be the smallest j for which (6.18) fails to hold. Since v ≤ k,
taking into account (6.16), we get that v is an even number. Let s0 +
1(≤ s) be the smallest number for which Fs0+1(σV (β)) > Ys0+1. Then
Fs0(σ

V (β)) = Ys0 . Furthermore s0 ≥ k. We prove that v = 0. If v 6= 0,
then yv+1 . . . yky1 . . . yv = Yk, i.e. Yk = Yk−vYv = YvYk−v. Consequently,
if in a sequence X 3 γ = c1c2 . . . , c1 . . . ck−v = Yk−v, k − v is odd,
then Fk(γ) ≤ Yk implies that ck−v−1 . . . ck = Yv. Hence we obtain that
XYk−v

= XYk
; k − v < k, which contradicts to the minimality of k. We

obtained that v = 0,

Fs0(β) = Ys0 , Fs0+1(β) > Ys0+1 .

Hence we obtain that Fs0−k(α) = yk+1 . . . ys0 and Fs0+1−k(β) < yk+1 . . .
ys0+1. Let r be the largest integer for which r(k + 1) ≤ s0 − k. Since
σk+1(α) = α, we obtain that Fs0−k−r(k+1)(α) = yk+r(k+1)+1 . . . ys0 and
that

Fs0−l(α) = yl+1 . . . ys0 , Fs0+1−l(α) < yl+1 . . . ys0+1, l = k + r(k + 1) .

This can occur only if yl+1 . . . ys0+1 = Yk. This proves the theorem for
odd k.

3. The case k =even can be proved similarly. We omit the details.
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6.3. Assume that Ys is of type A. Let W be the set of the following
finite words:

(1) i ∈ W , if i ∈ {1, . . . , y1 − 1}.
(2) for every k, 1 ≤ k < s, w = y1 . . . yki ∈ W , if yu+1 . . . yki ≤ Yk+1−u

(u = 0, . . . , k − 1) and i 6= yk+1, i ≤ y1 hold;

(3) Ys ∈ W .
Then Xw (w ∈ W ) are mutually disjoint sets,

∑
Xw = X.

Assume now that Ys is of type Bk. Then W (= W (k)) is defined as
follows:

(1) i ∈ W (k), if i ∈ {1, . . . , y1 − 1}
(2) for every j, 1 ≤ j < k, w = y1 . . . yj l for which yu+1 . . . yj l ≤ Yj+1−u

(u = 0, . . . , j − 1) l 6= yj+1, l ≤ y1 hold, let w ∈ W (k)

(3) Yk ∈ W (k).

Then {Xw, w ∈ W (k)} is a subdivision of X into the mutually disjoint
sets Xw.

Now we define the directed multigraph G(W ) (resp. G(W (k)) over
the set W (resp. W (k)) as the set of nodes by the following relation.
Let first Ys is of type A.

For 1 ≤ i < y1 we have Xi = iX, thus

(6.19) Xi =
∑

w∈W

i Xw .

Let z = Yri ∈ W , 1 ≤ r < s. If h is the largest number (h = 0 is included
with XY0 = X) for which z = Yr−hYh, then

(6.20) Xz = Yr−hXYh
=

∑
w∈W

λ(w)>h

Yr−hXw ,

(see Lemma 9). Especially in the case h = 0 we have

(6.21) Xz =
∑

w∈W

z Xw .

Finally we give a formula for XYs . We have XYs =
∑

1≤l≤y1

∗
XYsl, where

the asterisk means that we sum only for those l for which additionally
yu+1 . . . ysl ≤ Ys+l−u (u = 1, 2, . . . , s − 1) holds. Let u∗l be the smallest
value, if any, for which yu∗l +1 . . . ys l = Ys+l−u∗l . For such an l we have
XYsl = Yu∗l XYs+1−u∗l . Such an l will be called of first kind. If such a
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u does not exist (we say l is of second kind), then clearly XYsl = YslX.
Consequently

(6.22) XYs
=

∑

l

′
Yu∗l XYs+1−u∗

l
+

∑

l

′′
YslX ,

where in
∑′ we sum over the l of first kind, and in

∑′′ over the others.
At least one of the sums on the right hand side is non-empty.
Since y2 < y1 (y2 = y1 leads to the reducible case s = 2, Y2 = y1y1),
therefore s + 1− u∗l ≤ s− 1. Thus, by Lemma 9 we obtain that

(6.23) XYs =
∑

l

′ ∑
w∈W

λ(w)>s+1−u∗s

Yu∗l Xw +
∑

l

′′ ∑

w∈W

YslXw .

Construction of G(W ):
Let z ∈ W , z 6= Ys. Then direct edges to that w ∈ W which occur

in the formula (6.19), (6.20), (6.21) respectively. The edge is labeled by
the corresponding ”coefficient” standing before Xw. For example, if z is
subjected to (6.20), then we direct one edge to a w ∈ W if λ(w) > h, and
label this with Yr−h. For z = Ys and w ∈ W we direct as many edges from
z to w as many times Xw occurs in the right hand side of (6.23), and label
them with the corresponding coefficients Yu∗l or Ysl.

Theorem 6. If Ys is of type A then G(W ) is strongly connected.

Proof. The assertion is an immediate consequence of Lemma 9 and
(6.22), whence we obtain that for each w ∈ W , Xw ⊇ zX with an appro-
priate finite word z holds.

Assume now that Ys if of type B(k). The construction of G(W (k)) is
similar as earlier. The relations (6.19), (6.20), (6.21) are valid. Instead of
(6.22) we use the relation, (6.10), (6.14). Thus for odd k, from the point
Yk h + 1 loops are going out which are labelled by
Yk(Yk−1(yk − 1)1)j (j = 0, . . . , h). Thus from Yk we cannot reach any
element of W (k) \{Yk}. Furhermore the graph G(W (k))\{Yk}) is strongly
connected, due to the minimality condition in the definition Bk.

Theorem 7. If Ys is of type B(k) then G(W (k) \ {Yk}) is strongly
connected.
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Example 1. Let Y = Y4 = 4213. Then W={1, 2, 3, 44, 43, 4214, 4213}
We have: Xi =

∑
w∈W

iXw,

X4 = 4 X4 = 4 X44 + 4 X43 + 4 X4214 + 4 X4213

X43 = 43 X =
∑

w∈W

43 Xw

X4214 = 421 X4 = 421 X44 + 421 X43 + 421X4214 + 421 X4223

X4213 = 4213 X =
∑

w∈W

4213 Xw .

We draw G(W ) in a simplified form. If z ∈ W is such a node which is
subjected to the formula Xz =

∑
w∈W

zXw, then the corresponding edges

are not drawn and the nodes are marked with asterisk.
Then G(W )

Example 2. Let Y21 = 322(3211)3322333. Computing X we can sub-
stitute Y21 by Y18 = 322(3211)3322. Then Y is of type B(3). W = W (3) =
{1, 2, 33, 321, 322}
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We have: Xz =
∑

w∈W

Xw if w = 1; 2; 321. We denote them with z∗. Fur-

thermore X33 = 3 X33 + 3 X321 + 3 X322, X322 =
3∑

j=0

322(3211)jX322.

Thus the simplified form of G(W (3)) is the following

6.4. Let Θ + Θ2 < 1. If V is an arbitrary subset of H(= HΘ), then
L− V = {L− x : x ∈ V } ⊆ H∗.
For some α ∈ X let Ψ(α) :=

〈
ϕ−1(α), Θ

〉
. If x = Ψ(α), y = Ψ(σ(α)),

then
x = Θ + · · ·+ Θa1 + Θa1(L− y) .

The assumption Θ + Θ2 < 1 guarantees that if x ∈ [Θ, 1) then y ∈ [Θ, 1).
Thus, if

K = iQ, K,Q ⊆ X ,

then
Ψ(K) = Θ + · · ·+ Θi + Θi(L−Ψ(Q)) .

For an arbitrary finite word z we define the similarity fz : R → R recur-
sively, by the following rules:
(1) For z = i ∈ N let fi(x) = Θ + · · ·+ Θi + Θi(L− x).
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(2) If fi1...ij
are defined for every j ≤ r and every i1 . . . ir ∈ Kr, then

fi1...irir+1(x) = fi1(fi2...ir+1(x)). It is clear that fi1 . . . ir is a linear
function with contraction factor

r(i1 . . . ir) = Θi1+···+ir .

Let H(w) := Ψ(Xw) defined for finite words w. Then {H(w) | w ∈ W} is
a partition of H(= Ψ(X)) into disjoint non-empty compact sets.

The multigraph G(W ) (G(W (k))) generates the following relation
among them:

(6.24) H(z) =
⋃

fe(H(w)) (z ∈ W )

where in the right hand side we sum over all edges leaving z. e denotes
the label of the edge and w the endpoint.

Assume that Ys is of type A. Then G(W ) is a Mauldin-Williams
graph. The open set condition (due to Moran) clearly satisfied, therefore
the similarity dimension equals to the Hausdorff dimension of the com-
ponents H(z). All of the components have positive finite measures (with
respect to the σ-dimensional Hausdorff-measure µσ). σ can be computed
as the only nonnegative real number for which the equation system

(6.25) qσ
z =

∑
r(e)σqσ

w (z ∈ W )

has positive qz(z ∈ W ) solution.
Let us consider now the case when Ys is of type B(k). Assume that

t1 ≥ 3. Let m = t1 + · · · + tk. The set H(Yk) is self-similar, it is the
attractor of the iterated function system

H(Yk) =
⋃

fe(H(Yk)) ,

where in the right hand side we sum over the loops coinciding Yk. Thus its
similarity dimension = Hausdorff dimension = λ can be computed from

1 =
∑

e

r(e)λ .

Since r(e) run over the values Θm,Θ2m, . . . , Θhm, for odd k, and over the
values Θm+j(m+2) (j = 0, . . . , h) for even k, we have

1 = Θmλ + Θ2mλ + · · ·+ Θ(h+1)mλ(6.25)k odd

1 = Θmλ + Θmλ+(m+2)λ + · · ·+ Θmλ+h(m+2)λ(6.25)k even

Let X(1) := {α : Fk(α) < Yk},Ψ(X(1)) = H̃

It is clear that H̃∗ ⊆ H.
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Let X(2) = X \ X(1). Then X(2) can be represented as the union of
countable many sets of form z XYk

. Since the λ + ε dimensional measure
of Ψ(zXYk

) is zero for all of these subsets, therefore

µλ+ε(X(2)) = 0 for every ε > 0 .

Let X
(1)
w = Xw \X(2) defined for w ∈ W k \ Yk.

Then X(1) is the union of the disjoint sets X
(1)
w the relation among them

are defined by the strongly connected multigraph G(W \ {Yk}). Thus the
Hausdorff-dimension σ of the sets Ψ(X(1)), Ψ(X(1)

w ) can be computed,
µσ(Ψ(X(1)

w )) > 0.
If we can prove that σ > λ, then we conclude that

∞ > µσ(Xw) > 0 if w 6= Yk, 0 < µσ(X) < ∞ .

Let Z = {α : α = a1a2 . . . , 0 ≤ ai < y1}. Then Z ⊆ X(1), D := Ψ(Z) ⊆
H∗. Furthermore D is a self-similar set,

D =
y1−1∑

i=1

fi(D) ,

its Hausdorff dimension is that η for which

1 =
y1−1∑

i=1

Θiη

holds. Since η ≤ σ, if is enough to prove that λ < η.
But this is clear, if y1 ≥ 3. λ as a function of h in (6.25) is monoton-

ically increasing. Thus λ ≤ λ0, where

1 =
Θmλ0

1−Θmλ0
, i.e. Θλ0 =

(1
2

)1/m

.

Since m ≥ 3, therefore Θλ0 > 3/4, 3
4 +

(
3
4

)2

> 1, consequently η > λ0.
Finally we observe that the above method is applicable even in the

case y1 = 2. If s = 1, then this is clear. If s ≥ 2 and y1 = y2, then Y3

can be reduced to Y2 = 22, and we get that X1 = 1 X, X2 = 2X2, which
implies that H(Θ) is a countable set, therefore its Hausdorff dimension
equals to zero. We should consider only the cases when Ys is of type B.
Let y2 = 1. Assume that Ys is of type Bk. If k = 1, then Ys has the prefix
2(11)h2 with some integer h ≥ 0. Hence we obtain that

X1 = 1X, X2(11)j2 = 2(11)jX2 (j = 0. . . . , h)
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whence

Ψ(X2) =
h∑

j=0

f2(11)j (Ψ(X2))

follows. Then Ψ(X2) is a self-similar set, its Hausdorff dimension λ can be
computed as the solution of the equation

1 =
h∑

j=0

Θλ(2+2j) .

We have 0 < λ < 1.
Furthermore 0 < µλ(Ψ(X2)) < ∞. Since

X1 =
{

1N
}

+
∞∑

l=1

1lX2 ,

therefore µλ(Ψ(X1))=µλ(Ψ(1N))+
∞∑

l=1

µλ(Ψ(1lX2))=0+
∞∑

l=1

Θlλµλ(Ψ(X2)),

thus 0 < µλ(Ψ(X1)) < ∞.
Assume that k ≥ 2. If k is odd and yk = 1, or if k is even and yk = y1(= 2),
then Ys is of form (6.8) or (6.11) respectively, thus it is reducible. These
cases can be excluded.

Let k(≥ 3) be odd. Then k is at least so large then the index of the
second occurence of 2 in y1y2 . . . . Thus Ys = 2 1r2 . . . and k ≥ r + 2.
Since (6.9) holds, therefore m := y1 + · · · + yk ≥ r + 4. The Hausdorff
dimension λ of Ψ(XYk

) can be computed from the equation

(6.26) Θmλ + · · ·+ Θmλ(h+1) = 1 .

Let X ′ = {α : Fr+2(σj(α)) < 21r2}. If we prove that the Hausdorff
dimension of Ψ(X ′) is larger than λ, then we can compute it from the
Mauldin-Williams graph omitting the node Yk.

Let X ′′ be the attractor of

(6.27) X ′′ =
∑
l=0
2l<r

2 12lX ′′ .

Then X ′′ ⊆ X ′. The dimension σ of Ψ(X ′′) is obtained from

(6.28) 1 =
∑
l=0
2l<r

Θσ(2l+2) .

σ ≤ λ would imply that (ξ =)Θσ ≥ Θλ(= η). From (6.26), (6.28) we can
get immediately that it is impossible if m ≥ 6, i.e. if r ≥ 2. It remains the
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case r = 1.
Let k = even of form (6.13). Then yk = 1. If 2 1r2 is a prefix in Ys, then
k ≥ r − 1, and so m = y1 + · · ·+ yk ≥ r. Now the Hausdorff dimension λ
of Ψ(XYk

) is computed from the equation,

(6.29) Θmλ + Θmλ+(m+2)λ + · · ·+ Θmλ+h(m+2)λ = 1 .

If r is even, then Ys is of type B(1) which was considered earlier. Let
r be odd. Let us consider the set X ′′ defined by (6.27). The Hausdorff
dimension of Ψ(X ′′) is given as that σ for which (6.28) holds. Let ξ = Θσ,
η = Θλ. Let r > 1. The smallest value of η is getting by for h → ∞, i.e.
for 1 = ηm + η2m+2. Furthermore, from (6.28), 1 = ξ2 + ξ4 + · · · + ξr+1,
and this implies that ξ < η for m ≥ 3.

Finally we consider the case when r = 1, k =even, Ys is of form B(k).
If k = 2, then Ys is of form (6.13), i.e.

Y3h+6 = 21(121)h22, and F3(Ys) 6= 212.

Then k ≥ 4. Consequently either k = 4 and Y8+5h = 2121(12122)h2121
for some h ≥ 0 or k ≥ 6.
Let k = 4, W (0) = {1, 22, 211}, X ′ = X ′

1 + X ′
22 + X ′

211 defined by
X ′

1 = 1X ′, X ′′
22 = 2X ′′

2 , X ′
211 = 211X ′.

The Hausdorff-dimension σ of Ψ(X ′) can be computed from: qσ
1 = ΘσR,

qσ
22 = Θ2σ(R− qσ

1 ), qσ
211 = Θ4σR, R = qσ

1 + qσ
22 + qσ

211 (> 0), i.e. it is the
solution of the equation 1 = Θσ +Θ2σ−Θ3σ +Θ4σ. Since m = 6, similarly
as above we deduce that σ > λ. The case k ≥ 6 is similar, the proof is left
to the reader.

6.5. Now we summarize our result for the computation of the Haus-
dorff dimension of H.

Assume that Ys defining (6.2) cannot be further reduced. Then we
have:

1. If Ys is of type A, then the Hausdorff dimension of HΘ equals to the
similarity dimension of the Mauldin-Williams graph G(W ), G(W ) is
strongly connected.

2. Assume that Ys is of type B(k) and that Y2j+2 6= 2 12j2 (j =
0, 1, . . . ).
Then the Hausdorff-dimension σ of Ψ(X) is the same as the similarity
dimension of (the strongly connected) graph G(W | {Yk}).
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