On the structure of univoque numbers

By ZOLTÁN DARÓCZY (Debrecen)* and IMRE KÁTAI (Budapest, Pécs)**

1. Introduction

We shall continue our investigation in [1] on univoque sequences generated by Θ-adic expansion of real numbers. A method for the computation of the Hausdorff dimension of the set of univoque numbers will be presented.
Let $\frac{1}{2} \leq \Theta<1, \quad L=L(\Theta)=\Theta+\Theta^{2}+\cdots=\frac{\Theta}{1-\Theta}, \quad \lambda=\Theta L$.
For $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$ let

$$
\langle\varepsilon, \Theta\rangle:=\sum_{n=1}^{\infty} \varepsilon_{n} \Theta^{n}
$$

A sequence ε is said to be univoque with respect to Θ if $\langle\varepsilon, \Theta\rangle=\langle\delta, \Theta\rangle$, $\delta \in\{0,1\}^{\mathbb{N}}$ implies that $\varepsilon=\delta$, i.e that $\varepsilon_{j}=\delta_{j}(j=1,2, \ldots)$.

It is known that for any $x \in[0, L(\Theta)]$ there exists an $\varepsilon \in\{0,1\}^{\mathbb{N}}$ such that $x=\langle\varepsilon, \Theta\rangle$, namely this is true for $\varepsilon_{n}=\varepsilon_{n}(x)$, where $\varepsilon_{n}(x)$ is defined by induction on n, as follows:

$$
\varepsilon_{n}(x)= \begin{cases}1 & \text { if } \tag{1.1}\\ \sum_{i=1}^{n-1} \varepsilon_{i}(x) \Theta^{i}+\Theta^{n} \leq x \\ 0 & \text { if } \\ \sum_{i=1}^{n-1} \varepsilon_{i}(x) \Theta^{i}+\Theta^{n}>x\end{cases}
$$

The expansion $\langle\varepsilon(x), \Theta\rangle=x, \varepsilon(x)=\left(\varepsilon_{1}(x), \ldots\right)$ is called the regular expansion of x.
*This work was supported by the National Science Foundation Grant OTKA 1652.
${ }^{* *}$ The research has been supported by GO WEST grant and the OTKA 2153.

Every $x \in(0, L(\Theta)]$ can be expanded by the digits, $\delta_{n}=\delta_{n}(x)$ ($n=$ $1,2, \ldots)$ as well, where they are defined from

$$
\delta_{n}(x)= \begin{cases}1 & \text { if } \tag{1.2}\\ \sum_{i=1}^{n-1} \delta_{i}(x) \Theta^{i}+\Theta^{n}<x \\ 0 & \text { if } \\ \sum_{i=1}^{n-1} \delta_{i}(x) \Theta^{i}+\Theta^{n} \geq x\end{cases}
$$

The expansion $x=\langle\delta(x), \Theta\rangle, \delta(x)=\left(\delta_{1}(x), \ldots\right)$ is called the quasiregular expansion of x.

The expansions $\varepsilon(x), \delta(x)$ are the same except, if the regular expansion of x is finite (i.e. if $\varepsilon_{n}(x)=0$ for all large n).

Let $R(\Theta)=\{\varepsilon(x) \mid x \in[0, L]\}, R_{1}(\Theta)=\{\varepsilon(x) \mid x \in[0,1)\}$.
Let $l=l(\Theta)=\left(l_{1}, l_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$ be the quasi-regular expansion of 1 , i.e. $\delta_{j}(1)=l_{j}(j=1,2, \ldots)$. If 1 has a finite regular expansion in the base Θ, and $\langle\varepsilon(1), \Theta\rangle=s_{1} \Theta+\cdots+s_{k} \Theta^{k}, s_{k}=1$, then $\delta(1)=\left(s_{1}, s_{2}, \ldots, s_{k}-\right.$ $1,0, s_{1}, \ldots, s_{k}-1,0 \ldots$, i.e. $\delta(1)$ is a periodic sequence with period k.
W. Parry [2] gave a simple characterization of the sequences $a=$ $\left\{a_{1}, a_{2}, \ldots\right\} \in\{0,1\}^{\mathbb{N}}$ of $R_{1}(\Theta): a \in R_{1}(\Theta)$, if and only if

$$
\begin{equation*}
\left\{a_{r}, a_{r+1}, \ldots\right\}<\left\{l_{1}, l_{2}, \ldots\right\} \quad(r=1,2, \ldots) \tag{1.3}
\end{equation*}
$$

holds, in the sense of the lexicographic ordering.
He proved furthermore that $l \in\{0,1\}^{\mathbb{N}}$ is the regular expansion of 1 for a suitable $\Theta \in\left[\frac{1}{2}, 1\right)$, if and only if

$$
\begin{gather*}
l_{1}=1 \text { and } \\
\left\{l_{k+1}, l_{k+2}, \ldots\right\}<\left\{l_{1}, l_{2}, \ldots\right\} \tag{1.4}\\
k=1,2, \ldots
\end{gather*}
$$

holds.
One can prove simply that the periodic sequence $l \in\{0,1\}^{\mathbb{N}}$ with $l_{1}=1$ is the quasi-regular expansion of 1 with a suitable $\Theta \in\left[\frac{1}{2}, 1\right)$ if and only if

$$
\begin{equation*}
\left\{l_{k}, l_{k+1}, \ldots\right\} \leq\left\{l_{1}, l_{2}, \ldots\right\} \quad(k=1,2, \ldots) \tag{1.5}
\end{equation*}
$$

holds. If (1.5) holds, then with the corresponting Θ as base, the regular expansion of 1 is finite. In [1] we proved the following assertions (Theorem 2.1 and 2.4 which are formulated now as Lemma 1 and 2).

Lemma 1. The sequence $\varepsilon \in\{0,1\}^{\mathbb{N}}$ is univoque with respect to Θ if and only if both of the sequences $\varepsilon, \underline{1}-\varepsilon \in R(\Theta)$, where $\underline{1}=\{1,1, \ldots\}$.

Let $U(\Theta)$ be the set of univoque sequences.

Lemma 2. If $\frac{1}{2} \leq \Theta^{\prime}<\Theta<1$, then $U(\Theta) \subseteq U\left(\Theta^{\prime}\right)$.
Definition. The number $\Theta \in\left(\frac{1}{2}, 1\right)$ is said to be stable from below, if $U(\Theta)=U\left(\Theta^{\prime}\right)$ holds for some $\Theta^{\prime}<\Theta$. Similarly, Θ is stable from above, if $U\left(\Theta^{\prime \prime}\right)=U(\Theta)$ holds for some $\Theta^{\prime \prime}>\Theta$.

Remark. This definition is somewhat different from that was given in [1].
Let $H\left(=H_{\Theta}\right), H^{*}\left(=H_{\Theta}^{*}\right)$ be the set of univoque numbers (with respect to Θ) on the intervals $[\Theta, 1),[0,1)$, respectively. It is clear that

$$
\begin{equation*}
H^{*}=\{0\} \cup \bigcup_{n=0}^{\infty} \Theta^{n} H \tag{1.6}
\end{equation*}
$$

The set of univoque numbers $x \in[1, L]$ can be given as $\left(L-H^{*}\right) \cap[1, L]$. Let

$$
\begin{equation*}
U_{1}(\Theta):=\{\varepsilon \in U(\Theta),\langle\varepsilon, \Theta\rangle \in H\} \tag{1.6}
\end{equation*}
$$

i.e. $U_{1}(\Theta)$ is the set of those univoque sequences for which the represented number $\langle\varepsilon, \Theta\rangle$ falls into $[\Theta, 1)$.

2. A new notation for univoque sequences

First of all, let \mathcal{K}_{h} denote the set of words of length h over \mathbb{N}, and \mathcal{M} be the set of infinite words over \mathbb{N}, i.e. let

$$
\begin{aligned}
\mathcal{K}_{h} & :=\left\{m_{1} m_{2} \ldots m_{h} ; m_{j} \in \mathbb{N}\right\} \\
\mathcal{M} & :=\left\{\underline{m}=m_{1} m_{2} \ldots ; m_{j} \in \mathbb{N}\right\} .
\end{aligned}
$$

Let $F_{h}: \mathcal{M} \rightarrow \mathcal{K}_{h}$ be the mapping $F_{h}(\underline{m})=m_{1} \ldots m_{h}$; let σ be the shift operator acting as $\sigma\left(m_{1} m_{2} \ldots\right)=m_{2} m_{3} \ldots$.
Let us define the ordering relations in \mathcal{K}_{h} and in \mathcal{M} by the following relations:
(1) in $\mathcal{K}_{1}(=\mathbb{N})$: the common ordering
(2) in $\mathcal{K}_{2}: \quad n_{1} n_{2}<m_{1} m_{2}$ holds if $n_{1}<m_{1}$, or if

$$
n_{1}=m_{1} \quad \text { and } \quad n_{2}>m_{2} .
$$

(h) in $\mathcal{K}_{h}: \quad n_{1} n_{2} \ldots n_{h}<m_{1} \ldots m_{h}$, if

$$
n_{1}<m_{1}, \quad \text { or if } n_{1}=m_{1} \text { and } n_{2} \ldots n_{h}>m_{2} \ldots m_{h}
$$

In other words, if $n_{1} \ldots n_{h} \neq m_{1} \ldots m_{h}$ and k is the smallest index for which $n_{k} \neq m_{k}$, then
for odd $k: \quad n_{1} \ldots n_{h}<m_{1} \ldots m_{h}$, if $n_{k}<m_{k}$
for even $k: \quad n_{1} \ldots n_{h}<m_{1} \ldots m_{h}$, if $n_{k}>m_{k}$.
Let $\underline{m}, \underline{n}$ be two distinct words in \mathcal{M}. We say shat $\underline{m}<\underline{n}$, if $F_{h}(\underline{m}) \neq$ $F_{h}(\underline{n})$ implies that $F_{h}(m)<F_{h}(n)$ in \mathcal{K}_{h}. It is clear that this definition is correct.
Let $E \subseteq\{0,1\}^{\mathbb{N}}$ be the set of those sequences $\varepsilon=\left\{\varepsilon_{1}, \varepsilon_{2}, \ldots\right\}$ in which both of 0 and 1 occurs infinitely often, and $\varepsilon_{1}=1$. Let $\varphi: E \rightarrow \mathcal{M}$ be the one to one mapping defined as follows: Let ε (considered as an infinite word over $\{0,1\}$) of form $1^{a_{1}} 0^{b_{1}} 1^{a_{2}} 0^{b_{2}} \ldots$. Then $\varphi(\varepsilon)=a_{1} b_{1} a_{2} b_{2} \ldots$.

It is clear that, if $\varepsilon, \delta \in E$, then $\varepsilon<\delta$ holds in E (in the sense of the lexicograpic ordering) if and only if $\varphi(\varepsilon)<\varphi(\delta)$ in \mathcal{M}.

We have $U_{1}(\Theta) \subseteq E$. Let $\mathcal{M}^{(0)}=\mathcal{M}_{\Theta}^{(0)}=\varphi\left(U_{1}(\Theta)\right)$.
Let furthermore

$$
\underline{t}=t_{1} t_{2} \cdots=\varphi(l(\Theta))
$$

where $l(\Theta)$ is the sequence getting as the quasiregular expansion of 1 in the base Θ.

From the Parry condition and Lemma 1 we have
Lemma 3. $\alpha \in \mathcal{M}$ belongs to $\mathcal{M}_{\Theta}^{(0)}$ if and only if

$$
\begin{equation*}
\sigma^{l}(\alpha)<t \quad(l=0,1,2, \ldots) \tag{2.1}
\end{equation*}
$$

Proof. Clear.
Let $Y=y_{1} y_{2} \ldots \in \mathcal{M}, \quad Y_{h}:=F_{h}(Y)=y_{1} \ldots y_{h} ;$

$$
\begin{align*}
S(Y) & :=\left\{\alpha \in \mathcal{M}: \quad \sigma^{l}(\alpha)<Y, l=0,1,2, \ldots\right\}, \tag{2.2}\\
U_{k}(Y) & :=\left\{\alpha \in \mathcal{M}: \quad F_{k}\left(\sigma^{l}(\alpha)\right)<Y_{k}, l=0,1,2, \ldots\right\} \tag{2.3}\\
V_{k}(Y) & :=\left\{\alpha \in \mathcal{M}: \quad F_{k}\left(\sigma^{l}(\alpha)\right) \leq Y_{k}, l=0,1,2, \ldots\right\} . \tag{2.4}
\end{align*}
$$

It is clear that $U_{1}(Y) \subseteq U_{2}(Y) \subseteq \ldots$ and $V_{1}(Y) \supseteq V_{2}(Y) \supseteq \ldots$
Lemma 4. For each $k, l \in \mathbb{N}$ we have

$$
\begin{equation*}
U_{k}(Y) \subseteq S(Y) \subseteq V_{l}(Y) \tag{2.5}
\end{equation*}
$$

Proof. Clear.

Lemma 5. Let p be the smallest integer, if any, for which there exist $u, r \geq 1, u+r=p$ such that

$$
\begin{equation*}
y_{u+1} \ldots y_{u+r}>Y_{r} \tag{2.6}
\end{equation*}
$$

in the sense of ordering introduced in \mathcal{K}_{r}. Then

$$
\begin{equation*}
S(Y)=U_{p}(Y) \tag{2.7}
\end{equation*}
$$

Proof. If there is an $\alpha \in V_{u+r}(Y) \backslash U_{u+r}(Y)$, then $F_{p}\left(\sigma^{j}(\alpha)\right)=Y_{p}$ holds for some j. Then

$$
F_{r}\left(\sigma^{j+r}(\alpha)\right)>Y_{r}
$$

i.e. $\alpha \notin V_{r}(Y)$. Hence $V_{u+r}(Y)=U_{u+r}(Y)$, and (2.7) follows from (2.5).

Lemma 6. If $y_{2}>y_{1}$, then

$$
\begin{equation*}
S(Y)=\left\{\alpha=a_{1} a_{2} \ldots \quad \mid \quad 1 \leq a_{j} \leq y_{1}-1\right\} \tag{2.8}
\end{equation*}
$$

Let $y_{2}=y_{1}$ and denote $z=y_{1} y_{1} y_{1} \ldots$. If $z \geq Y$, then $S(Y)$ as in (2.8). If $z<Y$, then

$$
\begin{gather*}
S(Y)=\left\{\alpha=a_{1} a_{2} \ldots \mid 1 \leq a_{j} \leq y_{1}-1, j=1,2, \ldots\right\} \cup \tag{2.9}\\
\cup\left\{\alpha=\beta z \mid \beta=b_{1} \ldots b_{h}, 1 \leq b_{j} \leq y_{1}-1, h=0,1,2, \ldots\right\}
\end{gather*}
$$

($h=0$ is for the empty word!)
Proof. The first assertion comes from Lemma 5 immediately. Assume that $y_{2}=y_{1}$. If $\alpha \in S(Y)$, and the first occurrence of y_{1} in the sequence is $a_{h+1}=y_{1}$, then $\alpha=a_{1} a_{2} \ldots a_{h} z$, thus $\sigma^{h}(\alpha)=z, \sigma^{h}(\alpha)<Y$, this may occur only if $z<Y$. The further part of the lemma is clear.

Lemma 7. Let $\underline{t}=t_{1} t_{2} \cdots=\varphi(l(\Theta))$, and assume that $t_{2} \geq t_{1}$. Then

$$
\mathcal{M}_{\Theta}^{(0)}=\left\{\alpha=a_{1} a_{2} \ldots \quad \mid \quad 1 \leq a_{j} \leq t_{1}-1, j=1,2, \ldots\right\} .
$$

Proof. The assertion immediately follows from Lemma 4 and 6. The only critical element is $z=t_{1} t_{1} \ldots$ in the case $t_{2}=t_{1}$. Since \underline{t} comes from a quasi regular expansion of 1 , therefore $t_{2 j+1} \leq t_{1}$ and in the case $t_{2 j+1}=1$ $t_{2 j+2}>t_{2}=t_{1}$, since $\sigma^{2 j}(\underline{t}) \leq \underline{t}$. If $t_{k}=t_{1}$ for each k, then $z=\underline{t}$, and $z<\underline{t}$ does not hold. Let k be the smallest index for which $t_{k} \neq t_{1}$. If k odd, then $t_{k}<t_{1}$, but then $z>\underline{t}$. If k even, then $t_{k}>t_{1}$, and similarly we have $z>\underline{t}$. Thus $z \notin \mathcal{M}_{\Theta}^{(0)}$.

3. The structure of $M_{\Theta}^{(0)}$ in the case $t_{2} \geq t_{1}$

Theorem 1. Assume that the condition stated in Lemma 7 holds. Then H is self-similar, it is the attractor of the iterated function system

$$
\begin{equation*}
H=\bigcup_{a_{1}=1}^{t_{1}-1} \bigcup_{a_{2}=1}^{t_{1}-1} f_{a_{1}, a_{2}}(H) \tag{3.1}
\end{equation*}
$$

where $f_{a_{1}, a_{2}}(x)=\Theta^{a_{1}}+\Theta^{a_{1}+a_{2}} x$. The components on the right hand side of (3.1) are disjoint sets.
Let ξ denote the positive root of the polynomial $x^{t_{1}-1}+\cdots+x-1$; let

$$
\begin{equation*}
s:=\frac{\log 1 / \xi}{\log 1 / \Theta}(<1) . \tag{3.2}
\end{equation*}
$$

Then the Hausdorff dimension of H equals to its similarity dimension, $=s$.

Proof. (3.1) is a consequence of Lemma 7. From the definition follows that the components are disjoint. H is closed and bounded. The further assertion follows from a theorem of Hutchinson (see G. Edgar [3]).

4. On the set \mathcal{F}

Let \mathcal{F} denote the set of those Θ for which 1 is univoque with respect to Θ. If the regular expansion of 1 is finite, then clearly $\Theta \notin \mathcal{F}$, since then 1 has another expansion. If $\Theta \in \mathcal{F}, \underline{t}=\varphi(l(\Theta))$, then $\left\langle\varphi^{-1}\left(\sigma^{j}(\underline{t})\right), \Theta\right\rangle \in H_{\Theta}$ for each $j \geq 1$, therefore

$$
\begin{equation*}
\sigma^{j}(\underline{t})<\underline{t} \quad(j=1,2, \ldots) \tag{4.1}
\end{equation*}
$$

holds.
Let now $\underline{t} \in \mathcal{M}$ be an arbitrary sequence for which (4.1) $j(j=1,2, \ldots)$ holds. The fulfilment of the conditions $(4.1)_{2 l} \quad(l=1,2, \ldots)$ guarantee the existence of a Θ for which $\varphi^{-1}(\underline{t})=l(\Theta), \Theta \in\left(\frac{1}{2}, 1\right)$. Then (4.1) j implies that $\left\langle\varphi^{-1}\left(\sigma^{j}(t)\right), \Theta\right\rangle \in H$ for $j \geq 1$ (see Lemma 3), thus 1 is univoque with respect to Θ. We have proved

Theorem 2. $\underline{t} \in \mathcal{M}$ is the image of the regular (quasi-regular) expansion of 1 in the base of a suitable $\Theta \in \mathcal{F}$ if and only if (4.1) $j(j=1,2, \ldots)$ holds.

Theorem 3. The Lebesgue measure of \mathcal{F} is zero, its Hausdorff dimension is 1 .

Proof. I. In [1] we proved that $\Theta \in \mathcal{F}$ implies that $\Theta \leq \frac{\sqrt{5}-1}{2}$.
Let Θ and Θ^{\prime} be such numbers for which $l(\Theta)=\left\{l_{1}, \ldots, l_{k}, l_{k+1}, \ldots\right\}$, $l\left(\Theta^{\prime}\right)=\left\{l_{1}, \ldots, l_{k}, l_{k+1}^{\prime}, l_{k+2}^{\prime}, \ldots,\right\} l_{k+1}=0, l_{k+1}^{\prime}=1$.
Let $P_{1}(z)=\sum_{j=1}^{\infty} l_{j} z^{j}-1, P_{2}(z)=\sum_{j=1}^{k} l_{j} z^{j}+\sum_{j=k+1}^{\infty} l_{j}^{\prime} z^{j}-1$. Since
$P_{1}(\Theta)=0, P_{2}\left(\Theta^{\prime}\right)=0, P_{2}(\Theta)=\left|P_{2}(\Theta)-P_{1}(\Theta)\right| \leq c \Theta^{k}, P_{2}(\Theta)-P_{2}\left(\Theta^{\prime}\right)=$ $=\left(\Theta-\Theta^{\prime}\right) P_{2}^{\prime \prime}(\xi), \xi \in\left(\Theta, \Theta^{\prime}\right)$, and $(0<) c_{1}<P_{2}^{\prime \prime}(\xi)<c_{2}$ with numerical constants c_{1}, c_{2}, therefore

$$
\begin{equation*}
0<\Theta-\Theta^{\prime}<c_{3} \Theta^{k} \tag{4.2}
\end{equation*}
$$

Let $\mathcal{F}_{K}=\left\{\Theta \mid \Theta \in \mathcal{F}, t_{1}=K\right\}$. If $\Theta \in \mathcal{F}_{K}$, then
$1=\Theta+\cdots+\Theta^{t_{1}}+\Theta^{t_{1}+t_{2}+1}+\cdots, t_{1}=K, t_{2} \leq K$, consequently $\Theta_{K}=\max _{\Theta \in \mathcal{F}_{K}} \Theta$ satisfies

$$
\begin{equation*}
\sum_{j=1}^{K} \Theta_{K}^{j} \leq 1-\Theta_{K}^{2 K+1} \tag{4.3}
\end{equation*}
$$

Let R be an arbitrary large integer. Let us classify the elements of \mathcal{F}_{K} according to the sequence $t_{1}, t_{2}, \ldots, t_{R}$. The distance of two numbers, $\Theta_{1}, \Theta_{2} \in \mathcal{F}_{K}$ with $F_{R}\left(\varphi\left(\Theta_{1}\right)\right)=F_{R}\left(\varphi\left(\Theta_{2}\right)\right)=t_{1} t_{2} \ldots t_{R}$ is less than $c_{3} \Theta_{K}^{t_{1}+\cdots+t_{R}}$, due to (4.2). Thus \mathcal{F}_{K} can be covered by finitely many intervals the total length of which is less than

$$
c_{3}\left(\sum_{j=1}^{K} \Theta_{K}^{j}\right)^{R} \leq c_{3}\left(1-\Theta_{K}^{2 K+1}\right)^{R}
$$

The right hand side tends to zero as $R \rightarrow \infty$. Thus meas $\left(\mathcal{F}_{K}\right)=0$, whence meas $(\mathcal{F})=\sum$ meas $\left(\mathcal{F}_{K}\right)=0$. The first part of the theorem is proved.
II. Let $\mathcal{F}_{K}^{(0)}$ be the subset of \mathcal{F}_{K} defined by the conditions $\mathcal{F}_{K}^{(0)}=$ $\left\{\Theta \quad \mid \quad \varphi(l(\Theta))=t_{1} t_{2} \ldots ; t_{1}=K ; 1 \leq t_{j} \leq K-1, j \geq 2\right\}$. We shall show that for any given $\sigma<1$ there is a K such that the Hausdorff dimension of $\mathcal{F}_{K}^{(0)}$ is larger than σ.
Let $\Theta_{\min }, \Theta_{\max }$ denote the smallest and the largest elements of $\mathcal{F}_{K}^{(0)}$, respectively. Assume that $K \geq 3$. Then $\varphi\left(l\left(\Theta_{\min }\right)\right)=K 1(K-1) 1(K-1) \ldots$ Let Ψ_{K} be the positive root of the polynomial $1-\left(z+\cdots+z^{K-1}\right)$. Then
$\Theta_{\text {min }}<\Theta_{\max }<\Psi_{K}$, furthermore $\Psi_{K}-\Theta_{\min }<c \Psi_{K}^{K}$ holds with a suitable numerical constant c. The last inequality follows from (4.2).
Let $\Theta^{\prime}<\Theta, \Theta^{\prime}, \Theta \in \mathcal{F}_{K}^{(0)}$ with $l(\Theta)=l_{1} l_{2} \ldots, l\left(\Theta^{\prime}\right)=l_{1}^{\prime} l_{2}^{\prime} \ldots$ such that $l_{s}=0, l_{s+1}=1$ and $l_{j}=l_{j}^{\prime}$ for $1 \leq j \leq s$. Assume that $s>K$. Then $l_{1} \Theta+\cdots+l^{s-1} \Theta^{s-1}+\Theta^{s}>1, l_{1} \Theta^{\prime}+\cdots+l_{s-1} \Theta^{\prime s-1}+\Theta^{\prime s}<1-\Theta^{\prime s+K}$. The polynomial $h(z):=l_{1} z+\cdots+l_{s-1} z^{s-1}+z^{s}$ satisfies $(1 \leq) h^{\prime}(z) \leq 9$ for $z \leq 0,9$, say, whence

$$
\Theta^{\prime s+K}<h(\Theta)-h\left(\Theta^{\prime}\right)=\left(\Theta-\Theta^{\prime}\right) h^{\prime}(\xi), \xi \in\left(\Theta^{\prime}, \Theta\right)
$$

thus

$$
\begin{equation*}
\Theta-\Theta^{\prime} \geq \frac{1}{9} \Theta^{\prime s+K} \geq \frac{1}{9} \cdot \Theta_{\min }^{s+K} \tag{4.4}
\end{equation*}
$$

Let $f(V)$ be the number of the sequences l_{1}, \ldots, l_{V} which occur as the first V elements of $l(\Theta)=\left\{l_{1}, l_{2}, \ldots\right\}$ for some $\Theta \in \mathcal{F}_{K}^{(0)}$. For $V>U$ and given $l_{1}^{*}, \ldots l_{U}^{*}$ let $g\left(V \mid l_{1}^{*}, \ldots, l_{U}^{*}\right)$ be the number of the distinct l_{1}, \ldots, l_{V} occuring in the beginning of $l(\Theta)=\left\{l_{1}, l_{2}, \ldots\right\}$ for which the first U elements are fixed, $l_{1}=l_{1}^{*}, \ldots, l_{U}=l_{U}^{*}$.

Lemma 8. With suitable positive constants $c(K), c_{1}(K), c_{2}(K)$ we have

$$
\begin{gather*}
f(V)=c(K) \Psi_{K}^{-V}(1+o(1)) \text { as } V \rightarrow \infty, \tag{4.5}\\
c_{1}(K)<g\left(V \mid l_{1}^{*}, \ldots, l_{U}^{*}\right) \Psi_{K}^{V-U}<c_{2}(K) \text { if } U<V . \tag{4.6}
\end{gather*}
$$

First we continue the proof of the theorem assuming the validity of Lemma 8, then we prove it.

Assume in contrary that dimension $\left(\mathcal{F}_{K}^{(0)}\right)<\sigma$. Then, for arbitrary choice of $\varepsilon, \delta>0$, there is a covering $\mathcal{F}_{K}^{(0)} \subseteq \bigcup_{j=1}^{\infty} E_{j}$, such that diam $E_{j}<\delta$ and

$$
\sum_{j=1}^{\infty}\left(\operatorname{diam} E_{j}\right)^{\sigma}<\varepsilon
$$

Then there is such a covering with open intervals I_{j}, and even we may assume that the set of lengths of I_{j} belongs to the set $\left\{\Theta_{\min }^{r} \mid r=1,2, \ldots\right\}$. $\mathcal{F}_{K}^{(0)}$ is a closed set. Let $\mathcal{F}_{K}^{(0)} \subseteq \bigcup I_{j}$,

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left(\operatorname{diam} I_{j}\right)^{\sigma}<\varepsilon, \quad \operatorname{diam} I_{j}<\delta \tag{4.7}
\end{equation*}
$$

From the Heine-Borel theorem we obtain that there is a finite subcover, $\mathcal{F}_{K}^{(0)} \subseteq \bigcup_{j=1}^{p} I_{j}$. Let M_{r} be the number of intervals I_{j} with length $\Theta_{\min }^{r}$. Let $r_{o}=\left[\frac{\log 1 / \delta}{\log 1 / \Theta_{\min }}\right]$, and r_{1} be the largest j for which $M_{j} \neq 0$. Then $M_{j}=0$ for $j<r_{o}$. We have

$$
\begin{equation*}
\sum_{j=1}^{p}\left(\operatorname{diam} I_{j}\right)^{\sigma} \leq \sum_{r_{o} \leq j \leq r_{1}} M_{j} \Theta_{\min }^{j \sigma}<\varepsilon \tag{4.8}
\end{equation*}
$$

Let $V>r_{1}$ and $\mathcal{F}_{K}^{(0)}\left(l_{1}, \ldots, l_{V}\right)$ be the set of those $\Theta \in \mathcal{F}_{K}^{(0)}$, for which the first V elements of $l(\Theta)$ is the given sequence l_{1}, \ldots, l_{V}.

If $\Theta_{1}, \Theta_{2} \in \mathcal{F}_{K}^{(0)}$ are covered with the same interval I_{j} of length $\Theta_{\min }^{r}$, then $\Theta_{\min }^{r}>\left|\Theta_{1}-\Theta_{2}\right|$ and by (4.4) we obtain that the first $r-K-4$ digits of $l\left(\Theta_{1}\right)$ and of $l\left(\Theta_{2}\right)$ coincide.
Due to (4.6), the number of that sets among $\mathcal{F}_{K}^{(0)}\left(l_{1}, \ldots, l_{V}\right)$ which have nonempty intersection with I_{j}, is less than

$$
c_{2}(K) \Psi_{K}^{r-K-4} \cdot \Psi_{K}^{-V}
$$

Since any of $\mathcal{F}_{K}^{(0)}\left(l_{1}, \ldots, l_{V}\right)$ has a nonempty intersection with at least one I_{j}, therefore

$$
f(V) \leq c_{2}(K) \Psi_{K}^{-V} \sum_{r_{o} \leq r \leq r_{1}} M_{r} \Psi_{K}^{r-K-4}
$$

Then, from (4.5), taking the limit $V \rightarrow \infty$, we have

$$
(A:=) \frac{1}{\Psi_{K}^{K+4}} \frac{c(K)}{c_{2}(K)} \leq \sum_{r_{o} \leq r \leq r_{1}} M_{r} \cdot \Psi_{K}^{r}
$$

From (4.8) it follows that $M_{r}<\varepsilon \Theta_{\text {min }}^{-r \sigma}$, thus

$$
\begin{equation*}
A \leq \varepsilon \sum_{r_{o} \leq r<r_{1}}\left(\frac{\Psi_{K}}{\Theta_{\min }^{\sigma}}\right)^{r} \tag{4.9}
\end{equation*}
$$

If K is large enough, then $\Psi_{K}<\Theta_{\min }^{\sigma}$. For such choice of K the inequality (4.9) cannot be held if ε is small enough. This finishes the proof of the theorem.

Proof of Lemma 8. Let $f_{1}(n)$ be the number of that sequences in $\{0,1\}^{n}$, which do not contain K consecutive $1^{\prime} s$ and $0^{\prime} s$.

Then $f_{1}(n)=f_{1}(n-1)+\cdots+f_{1}(n-(K-1))$ for $n \geq K$. The characteristic polynomial $x^{K-1}-\left(x^{K-2}+\cdots+x+1\right)$ of this recursion
has only one root, namely Ψ_{K}^{-1} in the domain $|z| \geq 1$, therefore $f_{1}(n)=$ $C \Psi_{K}^{-n}(1+\sigma(1)) \quad(n \rightarrow \infty), C>0$ holds since $f(V)=f_{1}(V-k),(4.5)$ holds.

Since $g\left(V \mid l_{1}^{*}, \ldots, l_{U}^{*}\right) \geq f_{1}(V-U), g\left(V \mid l_{1}^{*}, \ldots, l_{U}^{*}\right) \geq f_{1}(V-U-K)$ clearly hold, (4.6) is true.

5. On stable numbers

Theorem 4. $\Theta \in\left(\frac{1}{2}, 1\right)$ is stable from both sides if and only if

$$
\begin{equation*}
\sigma^{j}(\underline{t})>\underline{t} \quad, \underline{t}=\varphi(l(\Theta)) \tag{5.1}
\end{equation*}
$$

holds for at least one j. If (5.1) fails, then Θ is instable from below.
Proof. Assume that (5.1) holds with $j=u$. Then for a suitable $r \geq 1$ we have

$$
\begin{equation*}
t_{u+1} \ldots t_{u+r}>T_{r} \tag{5.2}
\end{equation*}
$$

where in general $T_{s}:=F_{s}(\underline{t})=t_{1} \ldots t_{s}$. Then u is an even number due to (1.4), (1.5).

Then, from Lemma 5., applying it with $Y=\underline{t}$,

$$
\begin{equation*}
\varphi\left(U_{1}(\Theta)\right)=\mathcal{M}_{\Theta}^{(0)}=\left\{\alpha: F_{p}\left(\sigma^{j}(\alpha)\right)<T_{p}\right\} \tag{5.3}
\end{equation*}
$$

where $p=u+r$. (5.3) remains true for all those $\tilde{\Theta}$ for which in the notation $\tilde{t}=\varphi(l(\tilde{\Theta}))$ the relation $F_{p}(\tilde{t})=T_{p}$ holds: Hence

$$
\begin{equation*}
\mathcal{M}_{\tilde{\Theta}}^{(0)}=\mathcal{M}_{\Theta}^{(0)}, \quad U_{1}(\Theta)=U_{1}(\tilde{\Theta}) \tag{5.4}
\end{equation*}
$$

is valid in an open interval J around Θ. We may assume that $\Theta \leq \frac{\sqrt{5}-1}{2}$, since for bigger $\Theta, U(\Theta)=\{\underline{0}, \underline{1}\}$. Then $L(\Theta)<2$. The whole set of the univoque sequences, written as infinite words over $\{0,1\}$ can be given by the relation

$$
\begin{equation*}
U(\Theta)=\{\underline{0}\} \cup\{\underline{1}\} \cup \bigcup_{\substack{k=0 \\ l=0}}^{\infty}\left(1^{k} 0^{l} U_{1}(\Theta)\right) . \tag{5.5}
\end{equation*}
$$

(5.5) it follows immediately from Lemma 1 and from (1.6). (5.4) and (5.5) implies $U(\Theta)=U\left(\Theta^{\prime}\right)$. The first part of the theorem is proved. Assume that

$$
\begin{equation*}
\sigma^{j}(\underline{t}) \leq \underline{t} \quad(j=1,2, \ldots) \tag{5.6}
\end{equation*}
$$

holds.
If \underline{t} is periodic, then the regular expansion of 1 in the base Θ is finite, therefore 1 is not univoque with respect to $\Theta, \underline{t} \notin \mathcal{M}(U(\Theta))$. For an arbitrary $\Theta^{\prime}<\Theta$, the sequence $\underline{t}^{\prime}=\varphi\left(l\left(\Theta^{\prime}\right)\right)$ is larger than \underline{t}, thus by (5.6),

$$
\sigma^{j}(\underline{t})<\underline{t}^{\prime} \quad(j=0,1,2, \ldots) .
$$

Consequently $\underline{t} \in \mathcal{M}\left(U\left(\Theta^{\prime}\right)\right)$.
Assume that \underline{t} is not periodic. Then $\sigma_{j}(\underline{t})<\underline{t}(j=1,2, \ldots)$. We may assume that $t_{1} \geq 2$. Let $\alpha=11 \underline{t}$. It is not the image of the quasi regular expansion of any number with respect to Θ, therefore $\alpha \notin \mathcal{M}(U(\Theta))$.

The theorem is completely proved.
Let \mathcal{F}_{0} be the set of those Θ for which $\underline{t}=\varphi(l(\Theta))$ is periodic and (5.6) holds. Thus Θ is unstable from below if $\Theta \in \mathcal{F} \cup \mathcal{F}_{0}$.

Let $\Theta \in \mathcal{F} \cup \mathcal{F}_{0}$ and $w=\sup _{\eta \in H_{\Theta}^{0}} \eta$.. If $\eta \in H_{\Theta}^{(0)}$, then $\varepsilon(\eta) \leq \delta(w)$, where $\varepsilon(\eta)$ is the regular expansion of η, and $\delta(w)$ is the quasi regular expansion of $w \quad(\leq 1)$ in the base Θ. If $\eta=\sum_{k=1}^{\infty} \varepsilon_{k}(\eta) \Theta^{k}$ is univoque, then so is $\eta_{l}=\sum_{k=1}^{\infty} \varepsilon_{k+l}(\eta) \Theta^{k}$, and thus $\eta_{l}=w$. Furthermore, in the case $\varepsilon_{l}(\eta)=1$ we have $L(\Theta)-\eta_{l} \leq w$. Since w can be approximated by η, hence we have

$$
\sigma^{j}(\varphi(\varepsilon(\eta)))<\kappa=\varphi(\delta(w))
$$

and even

$$
\sigma^{j}(\kappa) \leq \kappa \quad(j=0,1,2, \ldots)
$$

holds.
Let us assume first that $w=1$. Let $\eta_{\nu} \in H_{\Theta} \quad \eta_{\nu} \uparrow 1, \kappa^{(\nu)}=\varphi\left(\varepsilon\left(\eta_{\nu}\right)\right)$. The sequence $11 \kappa^{(\nu)} \in \mathcal{M}_{\Theta}^{(0)}$ due to the fact that $\sigma^{j}\left(11 \kappa^{(\nu)}\right)<\kappa=\bar{t}$. Furthermore, for an arbitrary $\Theta^{\prime}>\Theta$, if $t^{\prime}=\varphi\left(l\left(\Theta^{\prime}\right)\right)$, then $t^{\prime}<t$, and $\sigma^{2}\left(11 \kappa^{(\nu)}\right)<t^{\prime}$ does not hold for at least one ν. Thus $11 \kappa^{(\nu)}$ is not the image of a univoque number with respect to Θ^{\prime}. Consequently Θ is unstable from above.

Let now $w<1$. Let $\Theta^{\prime}(>\Theta)$ be close to Θ so that for $t^{\prime}=\varphi\left(l\left(\Theta^{\prime}\right)\right)$, $\kappa<\underline{t}^{\prime}<\underline{t}$. If $Y=y_{1} y_{2} \ldots \in \mathcal{M}_{\Theta}^{(0)}$, then $\sigma^{j}(Y) \leq \kappa<t^{\prime}$, consequently $Y \in \mathcal{M}_{\Theta^{\prime}}^{(0)}$. Thus one get immediately that $U\left(\Theta^{\prime}\right)=U(\Theta)$, i.e. Θ is stable from above.

6. On the structure of $\mathcal{M}_{\Theta}^{(0)}$ for stable numbers

6.1 Due to Lemma 5 and Theorem 4, if Θ is stable (from both sides), then

$$
\begin{equation*}
\mathcal{M}_{\Theta}^{(0)}=\left\{\alpha: F_{k}\left(\sigma^{j}(\alpha)\right)<T_{k}, j=0,1,2, \ldots\right\} \tag{6.1}
\end{equation*}
$$

where $T_{k}=t_{1} \ldots t_{k}, k$ is the least index for which $t_{u+1} \ldots t_{k}>T_{k-u}$ holds for some $u \leq k$. Starting from (6.1), we can compute such an $Y=y_{1} \ldots y_{s}$ for which

$$
\begin{equation*}
\mathcal{M}_{\Theta}^{(0)}=\left\{\alpha: F_{s}\left(\sigma^{j}(\alpha)\right) \leq Y_{s}, j=0,1,2, \ldots\right\} \tag{6.2}
\end{equation*}
$$

We may assume furthermore that Y_{s} cannot be substituted by a smaller sequence $Y_{s}^{\prime}\left(<Y_{s}\right)$, and with a shorter one. If Y_{s} is so chosen then there is an element $\alpha\left(\in \mathcal{M}_{\Theta}^{(0)}\right)$ with prefix Y_{s}.

Let $Y_{v}=y_{1} \ldots y_{v} \quad(v=1, \ldots, s)$. If Y_{s} is such a sequence, then

$$
\left\{\begin{array}{l}
y_{u+1} \ldots y_{u+r} \leq Y_{r} \tag{6.3}\\
0 \leq u<u+r \leq s
\end{array}\right.
$$

We assume the fulfilment of (6.3) for the whole section 6. Notations: If $w \in \mathcal{K}_{h}, Z \subseteq \mathcal{M}$, then $w Z=\{w z: z \in \mathbb{Z}\}$.
The union of the sets $B_{r}(\subseteq \mathcal{M})$ is denoted as $\sum B_{r}$. Let $\left(\mathcal{M}_{\Theta}^{(0)}=\right) X$ be the set of sequences α determined by the inequalities in the right hand side of (6.2).
$\lambda(w)$ denotes the length of w. Thus $\lambda(w)=h$ for $w \in \mathcal{K}_{h}$.
Let $w^{k}=w \ldots \stackrel{k}{w}$, and $w^{\mathbb{N}}=w w \ldots, w^{0}=$ empty word.
Let $X_{w}:=\left\{\alpha: \alpha \in X, F_{\lambda(w)}(\alpha)=w\right\}$.
Lemma 9. Let $w=r_{1} \ldots r_{h}, 1 \leq h<s$ be such a sequence for which

$$
\begin{equation*}
r_{u+1} \ldots r_{h} \leq Y_{h-u} \quad(u=0, \ldots, h-1) \tag{6.4}
\end{equation*}
$$

holds. If u^{*} is the smallest integer u for which $r_{u^{*}+1} \ldots r_{h}=Y_{h-u^{*}}$, then

$$
\begin{equation*}
X_{w}=r_{1} \ldots r_{u^{*}} X_{Y_{h-u^{*}}} \tag{6.5}
\end{equation*}
$$

If (6.4) holds with the strict inequality for every u, then

$$
\begin{equation*}
X_{w}=w \tag{6.6}
\end{equation*}
$$

If (6.4) fails to hold for some u, then X_{w} is empty.
Proof. Clear. $w \alpha \in X$ if $X \ni \alpha=a_{1} a_{2} \ldots$, and

$$
\begin{equation*}
r_{u+1} \ldots r_{h} a_{1} \ldots a_{s-(h-u)} \leq Y_{s}, u=0, \ldots, h-1 \tag{6.7}
\end{equation*}
$$

holds. If $r_{u+1} \ldots r_{h}<Y_{h-u}$, then u is not a critical value, $(6.7)_{u}$ is valid for each α. The least critical value is $u=u^{*}$. It means that $w \alpha \in X$ if and only if $Y_{h-u^{*}} \alpha \in X$. Thus (6.5), (6.6) holds. The last assertion is obvious.

Lemma 10. Let k be an odd integer.

1. If $y_{k}=1$ and $Y_{2 k-1}=Y_{k} Y_{k-1}, s \geq 2 k-1$, then

$$
\begin{equation*}
X_{Y_{k-1}}=X_{Y_{k}}=Y_{k} X_{Y_{k}}=\left\{Y_{k}^{\mathbb{N}}=Y_{k} Y_{k} \ldots\right\} \tag{6.8}
\end{equation*}
$$

2. If $y_{k}>1$ and $s \geq 2 k+h(k+1), h \geq 0$ and

$$
\begin{equation*}
Y_{2 k+h(k+1)}=Y_{k}\left(Y_{k-1}\left(y_{k}-1\right) 1\right)^{h} Y_{k} \tag{6.9}
\end{equation*}
$$

then

$$
\begin{equation*}
X_{Y_{k}}=\sum_{j=0}^{h} Y_{k}\left(Y_{k-1}\left(y_{k}-1\right) 1\right)^{j} X_{Y_{k}} \tag{6.10}
\end{equation*}
$$

Here Y_{0} is thought to be the empty word.
Proof. 1. Let $\alpha \in X, \alpha=a_{1} a_{2} \ldots, F_{k-1}(\alpha)=Y_{k-1}$. Then $F_{2 k-1}(\alpha) \leq Y_{2 k-1}$, whence $a_{k} a_{k+1} \ldots a_{2 k-1} \leq 1 Y_{k-1}$. Thus $a_{k}=1$ and $\left(Y_{k-1} \geq\right) a_{k+1} \ldots a_{2 k-1} \geq Y_{k-1}$, i.e. $a_{k+1} \ldots a_{2 k-1}=Y_{k-1}$, and (6.8) holds.
2. Assume the fulfilment of (6.9). Let $\alpha=a_{1} a_{2} \cdots \in X, F_{k}(\alpha)=Y_{k}$. Then $a_{k+1} \ldots a_{2 k} a_{2 k+1} \geq Y_{k-1}\left(y_{k}-1\right) 1$. Hence $a_{k+1} \ldots a_{2 k}=Y_{k-1}$ and $a_{2 k}>y_{k}-1$. Then either $a_{2 k}=y_{k}$, or $a_{2 k}=y_{k}-1$ and $a_{2 k+1}=1$. In the first case $\alpha=Y_{k} Y_{k} \ldots$, in the second $\alpha=Y_{k} Y_{k-1}\left(y_{k}-1\right) 1 \alpha_{1}$ and

$$
F_{h(k+1)-1}\left(\alpha_{1}\right) \geq\left(Y_{k-1}\left(y_{k}-1\right) 1\right)^{h-1} Y_{k}
$$

Similarly as above we obtain that either $\alpha_{1}=Y_{k} \alpha_{2}$, or $\alpha_{1}=Y_{k-1}\left(y_{k}-1\right) 1 \alpha_{2}$, and in the latter case

$$
F_{(h-1)(k+1)-1}\left(\alpha_{2}\right) \geq\left(Y_{k-2}\left(y_{k}-1\right) 1\right)^{h-2} Y_{k}
$$

Iterating this argument at most h times we obtain (6.10).
Lemma 11. Let k be even:

1. If $y_{k}=y_{1}, s \geq 2 k-2$, and

$$
\begin{equation*}
Y_{2 k-2}=Y_{k-1} Y_{k-1} \tag{6.11}
\end{equation*}
$$

then

$$
\begin{equation*}
X_{Y_{k-1}}=X_{Y_{k}}=Y_{k-1} X_{Y_{k-1}}=\left\{Y_{k-1}^{\mathbb{N}}\right\} \tag{6.12}
\end{equation*}
$$

2. Let $y_{k}<y_{1}, s \geq 2 k+(k+1) h, h \geq 0$, and

$$
\begin{equation*}
Y_{2 k+(k+1) h}=Y_{k}\left(1 Y_{k-1}\left(y_{k}+1\right)\right)^{h} Y_{k} \tag{6.13}
\end{equation*}
$$

then

$$
\begin{equation*}
X_{Y_{k}}=\sum_{j=0}^{h} Y_{k}\left(1 Y_{k-1}\left(y_{k}+1\right)\right)^{j} X_{Y_{k}} \tag{6.14}
\end{equation*}
$$

Proof. It is very similar to that of Lemma 10. We leave it for the reader.

Remark. If (6.8) or (6.11) holds, then Y_{s} can be reduced to Y_{k}. We can exclude these cases.
6.2. Our purpose is to find an appropriate partition of X, the components of which are characterized by the prefixes of their elements, such that the relations among them allow to define a strongly connected Mauldin Williams multigraph.

Definition. 1. We say that Y_{s} is of type A if for each $k \leq s$ there exists a suitable finite word w for which

$$
\begin{equation*}
w X \subseteq X_{Y_{k}} \tag{6.15}
\end{equation*}
$$

holds.
2. We say that Y_{s} is of type B_{l} if l is the smallest integer for which no finite word w exists with the property $w X \subseteq X_{Y_{l}}$.

Theorem 5. Let Y_{s} be of type B_{k}. Then, for odd k (6.9), for even k (6.13) holds.

Proof. 1. Let $k=1$. If $s=1$, then $X_{Y_{1}}=Y_{1} X$, i.e. (6.15) holds. Let $s \geq 2 . y_{2} \leq y_{1}$ follows from (6.3). If $y_{2}=y_{1}$, then Y_{s} can be reduced to Y_{1} in (6.2), but we assumed that Y_{s} is the shortest which gives (6.2). If $y_{2} \leq y_{1}-2$, then $X_{Y_{1}} \supseteq X_{Y_{1}\left(y_{2}+1\right)}=y_{1}\left(y_{2}+1\right) X$. It remains the case $y_{2}=y_{1}-1$. If $s=2$, then $X_{Y_{1}} \supseteq X_{Y_{2}}=Y_{2} X$. Let $s \geq 3$. If $y_{3}>1$, then

$$
Y_{2} 1 X=X_{Y_{2} 1} \subseteq X_{Y_{2}} \subseteq X_{Y_{1}}
$$

Let $y_{3}=1$. If $s=3$, then $X_{Y_{1}} \supseteq X_{Y_{3}}=Y_{3} X$. Let $s \geq 4$. If $y_{4}<y_{2}$ then $X_{Y_{1}} \supseteq X_{Y_{3} y_{2}}=Y_{3} y_{2} X$. If $y_{4}=y_{1}$, then Y_{s} is of type (6.9). It remains the case $y_{4}=y_{2}$. Continuing this argument, since s is finite, we conclude that Y_{s} is of form (6.9).
2. Let $k>1, k$ odd, Y_{s} be of type B_{k}.

Due to the minimality of $k \quad X_{Y_{k-1}} \neq X_{Y_{k}}$, thus there is an $l, l \neq y_{k}$ such that $X_{Y_{k-1} l} \neq \emptyset$. Since k odd, therefore $l<y_{k}$, and so $y_{k}>1$.

From (6.3) we obtain that $y_{u+1} \ldots y_{k-1} y_{k} \leq Y_{k-u}, y_{u+1} \ldots y_{k-1} l \leq Y_{k-u}$, which for odd u implies that

$$
y_{u+1} \ldots y_{k-1}<Y_{k-u-1}(u \text { odd }) .
$$

Let

$$
\alpha=\left(Y_{k-1}\left(y_{k}-1\right) 1\right)^{\mathbb{N}} .
$$

Let us observe first that

$$
\begin{equation*}
F_{K}\left(\sigma^{j}(\alpha)\right)<Y_{k} \quad(j=0,1,2, \ldots) \tag{6.17}
\end{equation*}
$$

holds. The sequence $\beta:=Y_{k} \alpha$ cannot go through all the tests

$$
\begin{equation*}
F_{s}\left(\sigma^{j}(\beta)\right) \leq Y_{s} \tag{6.18}
\end{equation*}
$$

Assume in contrary that (6.18) holds.
Let $\triangle=\beta\left(Y_{k-1}\left(y_{k}-1\right) 1\right)^{r}, r$ large. Then X_{\triangle} is non empty, $\beta \alpha \in X_{\triangle}$. Hence, similarly as in the proof of Lemma 9 , we get that $\triangle=\triangle_{1} Y_{j}$ with an appropriate $j \in\{0,1, \ldots, k-1\}$ such that $X_{\triangle}=\triangle_{1} X_{Y_{j}}$. ($Y_{0}=$ empty word, $X_{Y_{0}}=X$). Since $j<k$, therefore $w^{*} X \subseteq X_{Y_{j}}$ would imply that $X_{Y_{k}} \supseteq X_{\triangle} \supseteq \triangle_{1} w^{*} X$, thus Y_{s} cannot be of type B_{k}.

Let v be the smallest j for which (6.18) fails to hold. Since $v \leq k$, taking into account (6.16), we get that v is an even number. Let $s_{0}+$ $1(\leq s)$ be the smallest number for which $F_{s_{0}+1}\left(\sigma^{V}(\beta)\right)>Y_{s_{0}+1}$. Then $F_{s_{0}}\left(\sigma^{V}(\beta)\right)=Y_{s_{0}}$. Furthermore $s_{0} \geq k$. We prove that $v=0$. If $v \neq 0$, then $y_{v+1} \ldots y_{k} y_{1} \ldots y_{v}=Y_{k}$, i.e. $Y_{k}=Y_{k-v} Y_{v}=Y_{v} Y_{k-v}$. Consequently, if in a sequence $X \ni \gamma=c_{1} c_{2} \ldots, c_{1} \ldots c_{k-v}=Y_{k-v}, k-v$ is odd, then $F_{k}(\gamma) \leq Y_{k}$ implies that $c_{k-v-1} \ldots c_{k}=Y_{v}$. Hence we obtain that $X_{Y_{k-v}}=X_{Y_{k}} ; k-v<k$, which contradicts to the minimality of k. We obtained that $v=0$,

$$
F_{s_{0}}(\beta)=Y_{s_{0}}, \quad F_{s_{0}+1}(\beta)>Y_{s_{0}+1}
$$

Hence we obtain that $F_{s_{0}-k}(\alpha)=y_{k+1} \ldots y_{s_{0}}$ and $F_{s_{0}+1-k}(\beta)<y_{k+1} \ldots$ $y_{s_{0}+1}$. Let r be the largest integer for which $r(k+1) \leq s_{0}-k$. Since $\sigma^{k+1}(\alpha)=\alpha$, we obtain that $F_{s_{0}-k-r(k+1)}(\alpha)=y_{k+r(k+1)+1} \ldots y_{s_{0}}$ and that

$$
F_{s_{0}-l}(\alpha)=y_{l+1} \ldots y_{s_{0}}, \quad F_{s_{0}+1-l}(\alpha)<y_{l+1} \ldots y_{s_{0}+1}, \quad l=k+r(k+1) .
$$

This can occur only if $y_{l+1} \ldots y_{s_{0}+1}=Y_{k}$. This proves the theorem for odd k.
3. The case $k=$ even can be proved similarly. We omit the details.
6.3. Assume that Y_{s} is of type A. Let W be the set of the following finite words:
(1) $i \in W$, if $i \in\left\{1, \ldots, y_{1}-1\right\}$.
(2) for every $k, 1 \leq k<s, w=y_{1} \ldots y_{k} i \in W$, if $y_{u+1} \ldots y_{k} i \leq Y_{k+1-u}$ $(u=0, \ldots, k-1)$ and $i \neq y_{k+1}, i \leq y_{1}$ hold;
(3) $Y_{s} \in W$.

Then $X_{w}(w \in W)$ are mutually disjoint sets, $\sum X_{w}=X$.
Assume now that Y_{s} is of type B_{k}. Then $W\left(=W^{(k)}\right)$ is defined as follows:
(1) $i \in W^{(k)}$, if $i \in\left\{1, \ldots, y_{1}-1\right\}$
(2) for every $j, 1 \leq j<k, w=y_{1} \ldots y_{j} l$ for which $y_{u+1} \ldots y_{j} l \leq Y_{j+1-u}$ $(u=0, \ldots, j-1) l \neq y_{j+1}, l \leq y_{1}$ hold, let $w \in W^{(k)}$
(3) $Y_{k} \in W^{(k)}$.

Then $\left\{X_{w}, w \in W^{(k)}\right\}$ is a subdivision of X into the mutually disjoint sets X_{w}.

Now we define the directed multigraph $G(W)$ (resp. $G\left(W^{(k)}\right)$ over the set W (resp. $W^{(k)}$) as the set of nodes by the following relation.
Let first Y_{s} is of type A.
For $1 \leq i<y_{1}$ we have $X_{i}=i X$, thus

$$
\begin{equation*}
X_{i}=\sum_{w \in W} i X_{w} \tag{6.19}
\end{equation*}
$$

Let $z=Y_{r} i \in W, 1 \leq r<s$. If h is the largest number ($h=0$ is included with $X_{Y_{0}}=X$) for which $z=Y_{r-h} Y_{h}$, then

$$
\begin{equation*}
X_{z}=Y_{r-h} X_{Y_{h}}=\sum_{\substack{w \in W \\ \lambda(w)>h}} Y_{r-h} X_{w} \tag{6.20}
\end{equation*}
$$

(see Lemma 9). Especially in the case $h=0$ we have

$$
\begin{equation*}
X_{z}=\sum_{w \in W} z X_{w} \tag{6.21}
\end{equation*}
$$

Finally we give a formula for $X_{Y_{s}}$. We have $X_{Y_{s}}=\sum_{1 \leq l \leq y_{1}}{ }^{*} X_{Y_{s} l}$, where the asterisk means that we sum only for those l for which additionally $y_{u+1} \ldots y_{s} l \leq Y_{s+l-u}(u=1,2, \ldots, s-1)$ holds. Let u_{l}^{*} be the smallest value, if any, for which $y_{u_{l}^{*}+1} \ldots y_{s} l=Y_{s+l-u_{l}^{*}}$. For such an l we have $X_{Y_{s} l}=Y_{u_{l}^{*}} X_{Y_{s}+1-u_{l}^{*}}$. Such an l will be called of first kind. If such a
u does not exist (we say l is of second kind), then clearly $X_{Y_{s} l}=Y_{s} l X$. Consequently

$$
\begin{equation*}
X_{Y_{s}}=\sum_{l}^{\prime} Y_{u_{l}^{*}} X_{Y_{s+1-u_{l}^{*}}}+\sum_{l}^{\prime \prime} Y_{s} l X \tag{6.22}
\end{equation*}
$$

where in \sum^{\prime} we sum over the l of first kind, and in $\sum^{\prime \prime}$ over the others. At least one of the sums on the right hand side is non-empty.
Since $y_{2}<y_{1}\left(y_{2}=y_{1}\right.$ leads to the reducible case $\left.s=2, Y_{2}=y_{1} y_{1}\right)$, therefore $s+1-u_{l}^{*} \leq s-1$. Thus, by Lemma 9 we obtain that

$$
\begin{equation*}
X_{Y_{s}}=\sum_{l}^{\prime} \sum_{\substack{w \in W \\ \lambda(w)>s+1-u_{s}^{*}}} Y_{u_{l}^{*}} X_{w}+\sum_{l}^{\prime \prime} \sum_{w \in W} Y_{s} l X_{w} . \tag{6.23}
\end{equation*}
$$

Construction of $G(W)$:
Let $z \in W, z \neq Y_{s}$. Then direct edges to that $w \in W$ which occur in the formula $(6.19),(6.20),(6.21)$ respectively. The edge is labeled by the corresponding "coefficient" standing before X_{w}. For example, if z is subjected to (6.20), then we direct one edge to a $w \in W$ if $\lambda(w)>h$, and label this with Y_{r-h}. For $z=Y_{s}$ and $w \in W$ we direct as many edges from z to w as many times X_{w} occurs in the right hand side of (6.23), and label them with the corresponding coefficients $Y_{u_{l}^{*}}$ or $Y_{s} l$.

Theorem 6. If Y_{s} is of type A then $G(W)$ is strongly connected.
Proof. The assertion is an immediate consequence of Lemma 9 and (6.22), whence we obtain that for each $w \in W, X_{w} \supseteq z X$ with an appropriate finite word z holds.

Assume now that Y_{s} if of type $B^{(k)}$. The construction of $G\left(W^{(k)}\right)$ is similar as earlier. The relations (6.19), (6.20), (6.21) are valid. Instead of (6.22) we use the relation, (6.10), (6.14). Thus for odd k, from the point $Y_{k} \quad h+1$ loops are going out which are labelled by $Y_{k}\left(Y_{k-1}\left(y_{k}-1\right) 1\right)^{j} \quad(j=0, \ldots, h)$. Thus from Y_{k} we cannot reach any element of $W^{(k)} \backslash\left\{Y_{k}\right\}$. Furhermore the graph $\left.G\left(W^{(k)}\right) \backslash\left\{Y_{k}\right\}\right)$ is strongly connected, due to the minimality condition in the definition B_{k}.

Theorem 7. If Y_{s} is of type $B^{(k)}$ then $G\left(W^{(k)} \backslash\left\{Y_{k}\right\}\right)$ is strongly connected.

Example 1. Let $Y=Y_{4}=4213$. Then $W=\{1,2,3,44,43,4214,4213\}$ We have: $\quad X_{i}=\sum_{w \in W} i X_{w}$,

$$
\begin{aligned}
& X_{4}=4 X_{4}=4 X_{44}+4 X_{43}+4 X_{4214}+4 X_{4213} \\
& X_{43}=43 X=\sum_{w \in W} 43 X_{w} \\
& X_{4214}=421 X_{4}=421 X_{44}+421 X_{43}+421 X_{4214}+421 X_{4223} \\
& X_{4213}=4213 X=\sum_{w \in W} 4213 X_{w}
\end{aligned}
$$

We draw $G(W)$ in a simplified form. If $z \in W$ is such a node which is subjected to the formula $X_{z}=\sum_{w \in W} z X^{w}$, then the corresponding edges are not drawn and the nodes are marked with asterisk.
Then $G(W)$

Example 2. Let $Y_{21}=322(3211)^{3} 322333$. Computing X we can substitute Y_{21} by $Y_{18}=322(3211)^{3} 322$. Then Y is of type $B^{(3)}$. $W=W^{(3)}=$ $\{1,2,33,321,322\}$

We have: $\quad X_{z}=\sum_{w \in W} X_{w}$ if $w=1 ; 2 ; 321$. We denote them with z^{*}. Furthermore $X_{33}=3 X_{33}+3 X_{321}+3 X_{322}, \quad X_{322}=\sum_{j=0}^{3} 322(3211)^{j} X_{322}$. Thus the simplified form of $G\left(W^{(3)}\right)$ is the following
6.4. Let $\Theta+\Theta^{2}<1$. If V is an arbitrary subset of $H\left(=H_{\Theta}\right)$, then $L-V=\{L-x: x \in V\} \subseteq H^{*}$.
For some $\alpha \in X$ let $\Psi(\alpha):=\left\langle\varphi^{-1}(\alpha), \Theta\right\rangle$. If $x=\Psi(\alpha), y=\Psi(\sigma(\alpha))$, then

$$
x=\Theta+\cdots+\Theta^{a_{1}}+\Theta^{a_{1}}(L-y) .
$$

The assumption $\Theta+\Theta^{2}<1$ guarantees that if $x \in[\Theta, 1)$ then $y \in[\Theta, 1)$. Thus, if

$$
K=i Q, \quad K, Q \subseteq X
$$

then

$$
\Psi(K)=\Theta+\cdots+\Theta^{i}+\Theta^{i}(L-\Psi(Q))
$$

For an arbitrary finite word z we define the similarity $f_{z}: \mathbb{R} \rightarrow \mathbb{R}$ recursively, by the following rules:
(1) For $z=i \in \mathbb{N}$ let $f_{i}(x)=\Theta+\cdots+\Theta^{i}+\Theta^{i}(L-x)$.
(2) If $f_{i_{1} \ldots i_{j}}$ are defined for every $j \leq r$ and every $i_{1} \ldots i_{r} \in \mathcal{K}_{r}$, then $f_{i_{1} \ldots i_{r} i_{r+1}}(x)=f_{i_{1}}\left(f_{i_{2} \ldots i_{r+1}}(x)\right)$. It is clear that $f_{i_{1}} \ldots i_{r}$ is a linear function with contraction factor

$$
r\left(i_{1} \ldots i_{r}\right)=\Theta^{i_{1}+\cdots+i_{r}}
$$

Let $H(w):=\Psi\left(X_{w}\right)$ defined for finite words w. Then $\{H(w) \mid w \in W\}$ is a partition of $H(=\Psi(X))$ into disjoint non-empty compact sets.

The multigraph $G(W)\left(G\left(W^{(k)}\right)\right)$ generates the following relation among them:

$$
\begin{equation*}
H(z)=\bigcup f_{e}(H(w)) \quad(z \in W) \tag{6.24}
\end{equation*}
$$

where in the right hand side we sum over all edges leaving z. e denotes the label of the edge and w the endpoint.

Assume that Y_{s} is of type A. Then $G(W)$ is a Mauldin-Williams graph. The open set condition (due to Moran) clearly satisfied, therefore the similarity dimension equals to the Hausdorff dimension of the components $H(z)$. All of the components have positive finite measures (with respect to the σ-dimensional Hausdorff-measure μ_{σ}). σ can be computed as the only nonnegative real number for which the equation system

$$
\begin{equation*}
q_{z}^{\sigma}=\sum r(e)^{\sigma} q_{w}^{\sigma} \quad(z \in W) \tag{6.25}
\end{equation*}
$$

has positive $q_{z}(z \in W)$ solution.
Let us consider now the case when Y_{s} is of type $B^{(k)}$. Assume that $t_{1} \geq 3$. Let $m=t_{1}+\cdots+t_{k}$. The set $H\left(Y_{k}\right)$ is self-similar, it is the attractor of the iterated function system

$$
H\left(Y_{k}\right)=\bigcup f_{e}\left(H\left(Y_{k}\right)\right)
$$

where in the right hand side we sum over the loops coinciding Y_{k}. Thus its similarity dimension $=$ Hausdorff dimension $=\lambda$ can be computed from

$$
1=\sum_{e} r(e)^{\lambda}
$$

Since $r(e)$ run over the values $\Theta^{m}, \Theta^{2 m}, \ldots, \Theta^{h m}$, for odd k, and over the values $\Theta^{m+j(m+2)}(j=0, \ldots, h)$ for even k, we have

$$
\begin{array}{cc}
(6.25)_{k \text { odd }} & 1=\Theta^{m \lambda}+\Theta^{2 m \lambda}+\cdots+\Theta^{(h+1) m \lambda} \tag{6.25}\\
(6.25)_{k \text { even }} & 1=\Theta^{m \lambda}+\Theta^{m \lambda+(m+2) \lambda}+\cdots+\Theta^{m \lambda+h(m+2) \lambda}
\end{array}
$$

Let $X^{(1)}:=\left\{\alpha: F_{k}(\alpha)<Y_{k}\right\}, \Psi\left(X^{(1)}\right)=\tilde{H}$ It is clear that $\tilde{H}^{*} \subseteq H$.

Let $X^{(2)}=X \backslash X^{(1)}$. Then $X^{(2)}$ can be represented as the union of countable many sets of form $z X_{Y_{k}}$. Since the $\lambda+\varepsilon$ dimensional measure of $\Psi\left(z X_{Y_{k}}\right)$ is zero for all of these subsets, therefore

$$
\mu_{\lambda+\varepsilon}\left(X^{(2)}\right)=0 \quad \text { for every } \varepsilon>0
$$

Let $X_{w}^{(1)}=X_{w} \backslash X^{(2)}$ defined for $w \in W^{k} \backslash Y_{k}$.
Then $X^{(1)}$ is the union of the disjoint sets $X_{w}^{(1)}$ the relation among them are defined by the strongly connected multigraph $G\left(W \backslash\left\{Y_{k}\right\}\right)$. Thus the Hausdorff-dimension σ of the sets $\Psi\left(X^{(1)}\right), \Psi\left(X_{w}^{(1)}\right)$ can be computed, $\mu_{\sigma}\left(\Psi\left(X_{w}^{(1)}\right)\right)>0$.

If we can prove that $\sigma>\lambda$, then we conclude that

$$
\infty>\mu_{\sigma}\left(X_{w}\right)>0 \text { if } w \neq Y_{k}, 0<\mu_{\sigma}(X)<\infty
$$

Let $Z=\left\{\alpha: \quad \alpha=a_{1} a_{2} \ldots, 0 \leq a_{i}<y_{1}\right\}$. Then $Z \subseteq X^{(1)}, D:=\Psi(\mathbb{Z}) \subseteq$ H^{*}. Furthermore D is a self-similar set,

$$
D=\sum_{i=1}^{y_{1}-1} f_{i}(D)
$$

its Hausdorff dimension is that η for which

$$
1=\sum_{i=1}^{y_{1}-1} \Theta^{i \eta}
$$

holds. Since $\eta \leq \sigma$, if is enough to prove that $\lambda<\eta$.
But this is clear, if $y_{1} \geq 3$. λ as a function of h in (6.25) is monotonically increasing. Thus $\lambda \leq \lambda_{0}$, where

$$
1=\frac{\Theta^{m \lambda_{0}}}{1-\Theta^{m \lambda_{0}}}, \text { i.e. } \Theta^{\lambda_{0}}=\left(\frac{1}{2}\right)^{1 / m}
$$

Since $m \geq 3$, therefore $\Theta^{\lambda_{0}}>3 / 4, \frac{3}{4}+\left(\frac{3}{4}\right)^{2}>1$, consequently $\eta>\lambda_{0}$.
Finally we observe that the above method is applicable even in the case $y_{1}=2$. If $s=1$, then this is clear. If $s \geq 2$ and $y_{1}=y_{2}$, then Y_{3} can be reduced to $Y_{2}=22$, and we get that $X_{1}=1 X, X_{2}=2 X_{2}$, which implies that $H(\Theta)$ is a countable set, therefore its Hausdorff dimension equals to zero. We should consider only the cases when Y_{s} is of type B. Let $y_{2}=1$. Assume that Y_{s} is of type B_{k}. If $k=1$, then Y_{s} has the prefix $2(11)^{h} 2$ with some integer $h \geq 0$. Hence we obtain that

$$
X_{1}=1 X, \quad X_{2(11)^{j} 2}=2(11)^{j} X_{2} \quad(j=0 \ldots, h)
$$

whence

$$
\Psi\left(X_{2}\right)=\sum_{j=0}^{h} f_{2(11)^{j}}\left(\Psi\left(X_{2}\right)\right)
$$

follows. Then $\Psi\left(X_{2}\right)$ is a self-similar set, its Hausdorff dimension λ can be computed as the solution of the equation

$$
1=\sum_{j=0}^{h} \Theta^{\lambda(2+2 j)}
$$

We have $0<\lambda<1$.
Furthermore $0<\mu_{\lambda}\left(\Psi\left(X_{2}\right)\right)<\infty$. Since

$$
X_{1}=\left\{1^{\mathbb{N}}\right\}+\sum_{l=1}^{\infty} 1^{l} X_{2}
$$

therefore $\mu_{\lambda}\left(\Psi\left(X_{1}\right)\right)=\mu_{\lambda}\left(\Psi\left(1^{\mathbb{N}}\right)\right)+\sum_{l=1}^{\infty} \mu_{\lambda}\left(\Psi\left(1^{l} X_{2}\right)\right)=0+\sum_{l=1}^{\infty} \Theta^{l \lambda} \mu_{\lambda}\left(\Psi\left(X_{2}\right)\right)$, thus $0<\mu_{\lambda}\left(\Psi\left(X_{1}\right)\right)<\infty$.
Assume that $k \geq 2$. If k is odd and $y_{k}=1$, or if k is even and $y_{k}=y_{1}(=2)$, then Y_{s} is of form (6.8) or (6.11) respectively, thus it is reducible. These cases can be excluded.

Let $k(\geq 3)$ be odd. Then k is at least so large then the index of the second occurence of 2 in $y_{1} y_{2} \ldots$ Thus $Y_{s}=21^{r} 2 \ldots$ and $k \geq r+2$. Since (6.9) holds, therefore $m:=y_{1}+\cdots+y_{k} \geq r+4$. The Hausdorff dimension λ of $\Psi\left(X_{Y_{k}}\right)$ can be computed from the equation

$$
\begin{equation*}
\Theta^{m \lambda}+\cdots+\Theta^{m \lambda(h+1)}=1 . \tag{6.26}
\end{equation*}
$$

Let $X^{\prime}=\left\{\alpha: F_{r+2}\left(\sigma^{j}(\alpha)\right)<21^{r} 2\right\}$. If we prove that the Hausdorff dimension of $\Psi\left(X^{\prime}\right)$ is larger than λ, then we can compute it from the Mauldin-Williams graph omitting the node Y_{k}.

Let $X^{\prime \prime}$ be the attractor of

$$
\begin{equation*}
X^{\prime \prime}=\sum_{\substack{l=0 \\ 2 l<r}} 21^{2 l} X^{\prime \prime} \tag{6.27}
\end{equation*}
$$

Then $X^{\prime \prime} \subseteq X^{\prime}$. The dimension σ of $\Psi\left(X^{\prime \prime}\right)$ is obtained from

$$
\begin{equation*}
1=\sum_{\substack{l=0 \\ 2 l<r}} \Theta^{\sigma(2 l+2)} \tag{6.28}
\end{equation*}
$$

$\sigma \leq \lambda$ would imply that $(\xi=) \Theta^{\sigma} \geq \Theta^{\lambda}(=\eta)$. From (6.26), (6.28) we can get immediately that it is impossible if $m \geq 6$, i.e. if $r \geq 2$. It remains the
case $r=1$.
Let $k=$ even of form (6.13). Then $y_{k}=1$. If $21^{r} 2$ is a prefix in Y_{s}, then $k \geq r-1$, and so $m=y_{1}+\cdots+y_{k} \geq r$. Now the Hausdorff dimension λ of $\Psi\left(X_{Y_{k}}\right)$ is computed from the equation,

$$
\begin{equation*}
\Theta^{m \lambda}+\Theta^{m \lambda+(m+2) \lambda}+\cdots+\Theta^{m \lambda+h(m+2) \lambda}=1 \tag{6.29}
\end{equation*}
$$

If r is even, then Y_{s} is of type $B^{(1)}$ which was considered earlier. Let r be odd. Let us consider the set $X^{\prime \prime}$ defined by (6.27). The Hausdorff dimension of $\Psi\left(X^{\prime \prime}\right)$ is given as that σ for which (6.28) holds. Let $\xi=\Theta^{\sigma}$, $\eta=\Theta^{\lambda}$. Let $r>1$. The smallest value of η is getting by for $h \rightarrow \infty$, i.e. for $1=\eta^{m}+\eta^{2 m+2}$. Furthermore, from (6.28), $1=\xi^{2}+\xi^{4}+\cdots+\xi^{r+1}$, and this implies that $\xi<\eta$ for $m \geq 3$.

Finally we consider the case when $r=1, k=$ even, Y_{s} is of form $B^{(k)}$. If $k=2$, then Y_{s} is of form (6.13), i.e.

$$
Y_{3 h+6}=21(121)^{h} 22, \text { and } F_{3}\left(Y_{s}\right) \neq 212
$$

Then $k \geq 4$. Consequently either $k=4$ and $Y_{8+5 h}=2121(12122)^{h} 2121$ for some $h \geq 0$ or $k \geq 6$.
Let $k=4, \quad W^{(0)}=\{1,22,211\}, X^{\prime}=X_{1}^{\prime}+X_{22}^{\prime}+X_{211}^{\prime}$ defined by $X_{1}^{\prime}=1 X^{\prime}, X_{22}^{\prime \prime}=2 X_{2}^{\prime \prime}, X_{211}^{\prime}=211 X^{\prime}$.
The Hausdorff-dimension σ of $\Psi\left(X^{\prime}\right)$ can be computed from: $q_{1}^{\sigma}=\Theta^{\sigma} R$, $q_{22}^{\sigma}=\Theta^{2 \sigma}\left(R-q_{1}^{\sigma}\right), q_{211}^{\sigma}=\Theta^{4 \sigma} R, R=q_{1}^{\sigma}+q_{22}^{\sigma}+q_{211}^{\sigma} \quad(>0)$, i.e. it is the solution of the equation $1=\Theta^{\sigma}+\Theta^{2 \sigma}-\Theta^{3 \sigma}+\Theta^{4 \sigma}$. Since $m=6$, similarly as above we deduce that $\sigma>\lambda$. The case $k \geq 6$ is similar, the proof is left to the reader.
6.5. Now we summarize our result for the computation of the Hausdorff dimension of H.

Assume that Y_{s} defining (6.2) cannot be further reduced. Then we have:

1. If Y_{s} is of type A, then the Hausdorff dimension of H_{Θ} equals to the similarity dimension of the Mauldin-Williams graph $G(W), G(W)$ is strongly connected.
2. Assume that Y_{s} is of type $B^{(k)}$ and that $Y_{2 j+2} \neq 21^{2 j} 2 \quad(j=$ $0,1, \ldots)$.
Then the Hausdorff-dimension σ of $\Psi(X)$ is the same as the similarity dimension of (the strongly connected) graph $G\left(W \mid\left\{Y_{k}\right\}\right)$.

References

[1] Z. Daróczy and I. Kátai, Univoque sequences, Publ. Math. Debrecen 42 (1993), 397-407.
[2] W. Parry, On the β expansions of real numbers, Acta Math. Hung. 11 (1960), 401-406.
[3] G. Edgar, Measure, topology and fractal geometry, Springer Verlag, New York, 1990.
I. KÁtai

EÖTVÖS L. UNIVERSITY
COMPUTER ALGEBRA DEPT
H-1088 BUDAPEST
MÚZEUM KRT 6-8
Janus pannonius university
DEPT. OF APPLIED MATH. AND INFORMATICS
PÉCS
Z. DARÓCZY

KOSSUTH L. UNIVERSITY
DEPT. OF MATHEMATICS
H-4010 DEbRECEN

