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A Steinhaus type theorem

By ANTAL JÁRAI (Debrecen)

Abstract. In this work a theorem of Steinhaus which states that the sum A1+A2

of two measurable sets with positive Lebesgue measure contains an interval is general-
ized to the case

F (A1, A2, . . . , An)

where F is a continuously differentiable function mapping the product of Euclidean
spaces with different dimensions into a Euclidean space.

A famous theorem of Steinhaus [13] asserts that, for any measurable
sets A,B ⊂ R with positive Lebesgue measure, A+B has an interior point.
This theorem allows various generalizations and modifications. A large
part of these papers are based on Weil’s idea [14] that the convolution
of the characteristic functions χA and χB (in case A and B has finite
measure) is a continuous function, hence the function

t 7→ µ(A ∩ (t−B)) =
∫

χB(t− y)χA(y) dµ(y)

is continuous and as follows from Fubini’s theorem, not everywhere zero.
This means that A + B contains a nonvoid open set. This proof works
directly when µ is a Haar measure on a locally compact Hausdorff group.

In the generalizations the following problem is treated: if we replace
the addition by a binary operation F (x, y), under what conditions on F
can we prove that F (A,B) contains a nonvoid open set? The first step was
done by Erdős and Oxtoby [3] proving in the case x, y ∈ R that, if F is
a continuously differentiable function with nonvanishing partial derivates,
then F (A,B) contains a nonvoid open set.

Further generalizations detail the case when x and y are from different
topological measure spaces and F satisfies certain solvability conditions in
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2 A. Járai

x and y. See in this direction Kuczma [7] and Sander [11]. Sander has
pointed out that one of the sets A, B may be nonmeasurable. These results
apply to the case when x, y ∈ Rn and F is a continuously differentiable
function of which the partial derivates are nonsingular.

A Steinhaus-type result for more than two sets is implicitly used in
Járai [5]. The most important feature of Weil’s idea has been generalized
by Krausz in [9] proving that the function

t 7→ µ(∩n
i=1g

−1
i,t (Ai))

is continuous if the functions gi,t does not map sets with positive mea-
sure into zero sets and depend smoothly on the parameter t. We note
that several variants of Steinhaus’ theorem have applications in the the-
ory of functional equations. More detailed references may be found in
Kuczma [7], Kuczma and Kuczma [8] and Sander [12].

In this paper we first replace the theorem stating that the convolution

t 7→
∫

Y

f1(t− y)f2(y) dµ(y)

is continuous with a theorem that the function

t 7→
∫

Y

h(f1(g1(t, y)), . . . , fn(gn(t, y))) dµ(y)

is continuous. Second, we generalize Steinhaus’ theorem to the case

F (A1, A2, . . . , An)

where F is a continuously differentiable function mapping the product of
Euclidean spaces with different dimensions into a Euclidean space. The
results of Weil and Krausz and the well-known case F (A,B), A,B ⊂ Rn

are corollaries.
We shall use the terminology of Federer [4] about measure theory.

By a measure on X we mean a countable subadditive nonnegative func-
tion defined on 2X ; (an outer measure in another terminology). λk shall
denote the k dimensional Lebesgue measure on Rk. Other notions of anal-
ysis are used in the usual way. In case of doubt we refer the reader to
Dieudonné [2].

I wish to thank Professor J. Aczél for help and advice during my work
on this paper. This research has been supported in part by his Natural
Sciences and Engineering Research Council of Canada grant. I also thank
the referee for his useful suggestions.
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Theorem 1. Let T , Y and Xi (i = 1, 2, . . . , n) be locally compact
Hausdorff spaces, and let Z, Zi (i = 1, 2, . . . , n) be separable Banach
spaces. Let ν and µi be finite Radon measures over Y and Xi, respectively.
Consider the functions fi : Xi → Zi, gi : T×Y → Xi, h : Z1×. . .×Zn → Z.
Suppose that, with the notations

gi,t(y) = gi(t, y) whenever (t, y) ∈ T × Y ,

the following conditions hold:

(1) h maps bounded subsets into bounded subsets, and is uniformly con-
tinuous on every bounded subset;

(2) fi ∈ L∞(µi) (i = 1, 2, . . . , n);
(3) g is continuous and for each ε > 0 there exists a δ > 0 such that

µi(gi,t(B)) ≥ δ whenever B ⊂ Y , ν(B) ≥ ε, t ∈ T and 1 ≤ i ≤ n.

Then the function

f(t) =
∫

Y

h(f1(g1(t, y)), . . . , fn(gn(t, y))) dν(y)

is continuous on T .

Proof. First we prove that the integral exists. We may replace each
fi by a bounded Borel function defined an all of Xi, which is almost equal
to fi. This switch does not change the integral, because, by (3), the set of
points y for which the value of fi(gi(t, y)) are changed, has measure 0.

Hence we may assume that the functions fi are bounded Borel func-
tions. By (1) the function

(4) y 7→ h(f1(g1(t, y)), . . . , fn(gn(t, y)))

is a Borel function whenever t ∈ T is fixed, and its image is a bounded
subset of Z. Hence the integral exists whenever t ∈ T .

Now let ε > 0 and t0 ∈ T . Let us choose a real number M > 0,
for which the image of (4) is contained in the closed ball with center 0
and radius M . By (3), there exists a δ > 0 such that B ⊂ Y , ν(B) ≥
ε′ = ε/(16Mn), t ∈ T and 1 ≤ i ≤ n implies µi(gi,t(B)) ≥ δ. Let us
choose a compact set C ⊂ Y for which ν(Y \ C) < ε/(8M). Let V be
a neighbourhood of t0 with compact closure in T . By Luzin’s theorem
there exists a compact set Ci in Xi for which µi(Xi \ Ci) < δ and fi|Ci

is continuous. Let us choose uniformities on the spaces T , Y , X1, . . . , Xn

compatible with its topology. By (1) there exists an α > 0 such that

|h(z1, . . . , zn)− h(z′1, . . . , z′n)| < ε

2ν(Y )
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whenever zi, z
′
i ∈ Zi, |zi − z′i| < α and |zi|, |z′i| ≤ ‖fi‖u, where ‖ ‖u is the

uniform norm. Because of the uniform continuity of fi|Ci there exists a
reflexive symmetric relation βi in the uniformity of Xi such that

|fi(xi)− fi(x′i)| < α

whenever xi, x
′
i ∈ Ci and xi and x′i are βi-near, that is, (xi, x

′
i) ∈ βi.

Because of the uniform continuity of gi on the compact set V̄ × C, there
exists a reflexive symmetric relation γ in the uniformity of Y and a reflexive
symmetric relation η in the uniformity of T such that gi(t0, y) and gi(t, y′)
are βi-near in Xi whenever t and t0 are η-near in V̄ and y and y′ are γ-near
in C. Now let t be an element of V which is η-near to t0, and let

K =
n⋂

i=1

g−1
i,t0

(Ci) ∩
n⋂

i=1

g−1
i,t (Ci) ∩ C.

Then

Y \K = Y \ C ∪
(

n⋃

i=1

g−1
i,t (Xi \ Ci)

)
∪

(
n⋃

i=1

g−1
i,t (Xi \ Ci)

)

and hence (using (3) and that µi(Xi \ Ci) < δ)

(5) ν(Y \K) <
ε

8M
+ n

ε

16Mn
+ n

ε

16Mn
=

ε

4M
.

Using this, we have

|f(t)− f(t0)| ≤
∫

Y

|h(f1(g1(t, y)), . . . , fn(gn(t, y)))

− h(f1(g1(t0, y)) . . . , fn(gn(t0, y)))| dν(y)

=
∫

Y \K
|h(f1(g1(t, y)), . . . , fn(gn(t, y)))

− h(f1(g1(t0, y)), . . . , fn(gn(t0, y)))| dν(y)

+
∫

K

|h(f1(g1(t, y)), . . . , fn(gn(t, y)))

− h(f1(g1(t0, y)), . . . , fn(gn(t0, y)))| dν(y).

By (5) the first term on the right side is not greater than 2Mε/(4M) = ε/2.
By the choice of K, α, β1, . . . , βn, γ and η, the second term on the right
side is not greater than ν(Y )ε/(2ν(Y )) = ε/2. ¤
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As an illustration how one can get earlier results from the general
theorem above, we give two examples. The following result was first proved
by Krausz in [9] (under the condition that every Ai is measurable).

Corollary 1. Let Xi, Y , T , µi, ν and gi be the same as in Theorem 1.
Suppose that condition (3) of Theorem 1 is satisfied, and let Ai be a subset
of Xi. Suppose that Ai is µi measurable if 2 ≤ i ≤ n. Then the function

f(t) = ν

(
n⋂

i=1

g−1
i,t (Ai)

)
whenever t ∈ T

is continuous on T .

Proof. By condition (3) of Theorem 1 the set g−1
1,t (B1) is a ν hull of

g−1
1,t (A1) whenever B1 is a µ1 hull of A1. Hence

f(t) =
∫

Y

χB1(g1(t, y)) · χA2(g2(t, y)) · . . . · χAn(gn(t, y)) dν(y)

where χAi is the characteristic function of Ai and χB1 is the characteristic
function of B1. ¤

The following corollary is well-known.

Corollary 2. Let G be a locally compact Hausdorff group and let µ
be a left Haar measure on G. Let Ai (i = 1, 2, . . . , n) be a subset of G
with finite measure. Suppose that Ai is µ measurable if 2 ≤ i ≤ n. Then
the mapping

(t1, . . . , tn) 7→ µ(t1A1 ∩ t2A2 ∩ . . . ∩ tnAn)

of Gn into R is continuous.

Proof. Because the replacement of A1 by a µ hull does not change
this function, we may suppose that A1 is µ measurable too. If µ(Ai) is
equal to 0 for some i, then there is nothing to prove. If µ(Ai) > 0 for each
i, then let ε > 0 and T be an open subset of Gn with compact closure. Let
us choose compact sets Ci such that Ci ⊂ Ai and µ(Ai \ Ci) < ε. Let

Y = ∪{t1C1 ∪ t2C2 ∪ . . . ∪ tnCn : (t1, . . . , tn) ∈ T}.
Then Y is an open subset of G with compact closure as well as the sets

Xi = {t−1
i y : y ∈ Y, (t1, . . . , tn) ∈ T}.

Let
gi(t, y) = t−1

i y if (t1, . . . , tn) ∈ T and y ∈ Y .
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Applying the preceding corollary we get that the function

t 7→ µ(t1C1 ∩ t2C2 ∩ . . . ∩ tnCn)

is continuous on T . But

0 ≤ µ(t1A1 ∩ t2A2 ∩ . . . ∩ (tnAn)− µ(t1C1 ∩ t2C2 ∩ . . . ∩ tnCn)

≤
n∑

i=1

µ(tiAi \ tiCi) ≤ nε.

Hence
(t1, . . . , tn) 7→ µ(t1A1 ∩ . . . ∩ tnAn)

is the uniform limit of continuous functions, and so itself is continuous.
¤

In the following Lemma which will be needed for the proof of our
main result, we give sufficient conditions for the validity of condition (3)
in Theorem 1.

Lemma 1. Let Y be an open subset of Rk, let T be a topological
space, c ∈ Y and d ∈ T . Let g : T ×Y → Rr be a continuous function and

suppose that
∂g
∂y

is continuous and

rank
(

∂g

∂y
(d, c)

)
= r.

Then there exist open neighbourhoods Y ∗ and T ∗ of c and d, respectively,
and there exists a constant 0 < C < ∞ such that Y ∗ ⊂ Y , T ∗ ⊂ T and

(1) λk(B) ≤ λr(gt(B))C(diamB)k−r

whenever B ⊂ Y ∗ and t ∈ T ∗. (Here diam B denotes the diameter of the
set B.) Moreover,

(2) g−1
t (A) ∩ Y ∗ is λk measurable whenever A is a λr measurable subset

of Rr and t ∈ T ∗.

Proof. Let q = k − r and let us divide the coordinates of y =
(y1, . . . , yk) into two groups y′ = (y′1, . . . , y′q) and y′′ = (y′′1 , . . . , y′′r ) so
that the equation

det
(

∂g

∂y′′
(d, c)

)
= det

(
∂g

∂y′′
(d, c′, c′′)

)
6= 0

be satisfied. Let
gt,y′(y′′) = g(t, y′, y′′) = g(t, y)
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and let us introduce the notation

L(t, y′) =
∂g

∂y′′
(t, y′, c′′).

Using the proof of the inverse function theorem (see Rudin [10], Theo-
rem 9.24) we obtain that, if Y ′′ is an open ball with centre c′′ in Rr, t ∈ T ,
(y′, y′′) ∈ Y and

(3)
∥∥∥∥

∂g

∂y′′
(t, y′, y′′)− L(t, y′)

∥∥∥∥ <
1

2‖L(t, y′)−1‖
whenever y′′ ∈ Y ′′, then gt,y′ is a homeomorphic mapping of Y ′′ onto an
open subset U(t, y′) of Rr. (Here ‖ ‖ is the operator norm.) Now let

0 < β <
1

2‖L(d, c′)−1‖
and

(4) 0 < γ <

∣∣∣∣det
∂g

∂y′′
(d, c′, c′′)

∣∣∣∣ .

Using the continuity of the expressions in (3) and (4) we can choose an
open ball Y ′′ with centre c′′ and open sets Y ′ and T ∗ such that d ∈ T ∗,
c′ ∈ Y ′, Y ∗ = Y ′ × Y ′′ ⊂ Y , moreover t ∈ T ∗, y′ ∈ Y ′, y′′ ∈ Y ′′ implies
that ∥∥∥∥

∂g

∂y′′
(t, y′, y′′)− L(t, y′)

∥∥∥∥ < β;

β <
1

2‖L(t, y′)−1‖ ;

γ <

∣∣∣∣det
∂g

∂y′′
(t, y′, y′′)

∣∣∣∣ .

Let α(q) denote the λq measure of the q dimensional unit ball (α(0) = 1).
We are going to prove that

λk(B) ≤ λr(gt(B))
α(q)
γ

(diamB)k−r

whenever B ⊂ Y ∗ and t ∈ T ∗. Let R = diam B. Then there exists a closed
ball V with radius R in Rq such that

B ⊂ (V ∩ Y ′)× Y ′′.

Suppose to the contrary that there exists a t ∈ T ∗ for which

λk(B) > λr(gt(B))CRq
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where C = α(q)/γ. Then we can choose an open set U for which gt(B) ⊂ U
and

λk(B) > λr(U)CRq.

Let
B∗ = g−1

t (U) ∩ ((V ∩ Y ′)× Y ′′).

Then B ⊂ B∗, B∗ is a Borel set and gt(B∗) ⊂ U , that is

λr(gt(B∗))CRq < λk(B) ≤ λk(B∗).

We are going to prove that this is impossible. Let

B∗
y′ = {y′′ : (y′, y′′) ∈ B∗} if y′ ∈ V ∩ Y ′.

Using the theorem concerning transformations of integrals we have that

λr(gt(B∗)) ≥ λr(gt,y′(B∗
y′)) =

∫

B∗
y′

∣∣∣∣det
∂g

∂y′′
(t, y′, y′′)

∣∣∣∣ dλr(y′′) ≥ γλr(B∗
y′)

whenever y′ ∈ V ∩ Y ′. By Fubini’s theorem

λk(B∗) =
∫

V ∩Y ′
λr(B∗

y′) dλq(y′)

≤ λr(gt(B∗))
γ

λq(V ) = λr(gt(B∗))CRq

which is a contradiction. Hence the proof of (1) is complete.
To prove (2) we may clearly suppose that A is bounded. Let C be a

Borel set for which A ⊂ C and λr(C \A) = 0. Then

g−1
t (A) ∩ Y ∗ = (g−1

t (C) ∩ Y ∗) \ (g−1
t (C \A) ∩ Y ∗).

Since g−1
t (C) ∩ Y ∗ is a Borel set and g−1

t (C \ A) ∩ Y ∗ has measure 0 by
(1), the set g−1

t (A) ∩ Y ∗ is λk measurable. ¤

Lemma 2. Under the conditions of Lemma 1, if a subset D of Rr has
density 1 in the point g(d, c) then g−1

d (D)∩Y ∗ has density 1 in the point c.

Proof. By the continuity of ∂g
∂y

(d, y) the function gd satisfies the
Lipschitz condition on a neighbourhood of c. Hence there exist a γ > 0
and an 0 < M < ∞ such that y ∈ Y ∗ and

|g(d, y)− g(d, c)| ≤ M |y − c|
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whenever |y − c| < γ. Let α(k) and α(r) denote the λk and λr measures
of the k and r dimensional unit balls, respectively. Let ε > 0, and let

0 < δ <
εα(k)

Mr2k−rα(r)C
.

Let us choose a β > 0 such that, whenever V is a closed ball with centre
g(d, c) and radius less than β, then

λr(V ∩D) ≥ (1− δ)λr(V ).

We prove that if W is a closed ball in Y ∗ with centre c and radius less
than γ and β/M , then

λk(W ∩ g−1
d (D)) ≥ (1− ε)λk(W ).

Suppose to the contrary that for a such W with radius R

λk(W ∩ g−1
d (D)) < (1− ε)λk(W ).

Then there exists a compact subset B ⊂ W \ g−1
d (D) for which

λk(B) > ελk(W ).

Hence by Lemma 1,

εRkα(k) = ελk(W ) < λk(B) ≤ C2k−rRk−rλr(gd(B)).

But gd(B) is a compact subset of V \D, where V = gd(W ) is the closed ball
in Rr with centre g(d, c) and radius MR < β. Since λr(V \D) < δλr(V )
we get

εRkα(k) ≤ C2k−rRk−rδλr(V ) = C2k−rRk−rMrRrα(r)δ

which contradicts the choice of δ. ¤
Theorem 2. Let X be an r dimensional Euclidean space, and let

X1, . . . , Xn be orthogonal subspaces of X with dimensions r1, . . . , rn.
Suppose, that ri ≥ 1 (1 ≤ i ≤ n) and

∑n
i=1 ri = r. Let U be an open

subset of X and F : U → Rm be a continuously differentiable function.
For each x ∈ U let Nx denote the nullspace of F ′(x). Let Ai be a subset
of Xi (i = 1, . . . , n) and suppose that Ai is λri measurable for 2 ≤ i ≤ n.
Let a ∈ U , dim Na = r −m. Let pi denote the orthogonal projection of
X onto Xi. Suppose that pi(Na) = Xi and Ai has density 1 in the point
pi(a) whenever 1 ≤ i ≤ n. Then

F (A1 ×A2 × . . .×An)
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is a neighbourhood of F (a).

Proof. Let k = r − m. Because of the fact that x 7→ rank F ′(x)
is lower semicontinuous, and rank(F ′(a)) = m, we may suppose that
rank(F ′(x)) = m whenever x ∈ U . Similarly, choosing a smaller U if nec-
essary, we may suppose that pi(Nx) = Xi whenever x ∈ U and 1 ≤ i ≤ n;
to prove this, suppose to the contrary that there exists an i and for each
natural number j there exists an xj ∈ U and there exist orthonormal
vectors e

(j)
1 , . . . , e

(j)
k−ri+1 in Nxj such that xj → a and

pi(e(j)
s ) = 0 whenever j = 1, 2, . . . and 1 ≤ s ≤ k − ri + 1.

Using the compactness of the unit sphere we can pass over a subsequence
and suppose that

e(j)
s → es if j →∞.

But this proves that the vectors es are orthonormal in Na and

pi(es) = 0 whenever 1 ≤ s ≤ k − ri + 1,

which is a contradiction.
Now, choosing a smaller U if necessary and using the rank theorem

(see Dieudonné [2], 10.3.1), we have that there exist mappings u, p and
v and an open neighbourhood V of b = F (a) in Rm with the following
properties: u maps U onto the open cube Ir, where I = ]−1, 1[, u is
invertible and u and u−1 are continuously differentiable; v maps Im onto
V , v is invertible and v and v−1 are continuously differentiable; p is the
projection

p : (x1, . . . , xr) 7→ (x1, . . . , xm)

of Ir onto Im; and finally F = v ◦ p ◦ u. We may write Ir as

Ir = T × Y where T = Im and Y = Ik.

Let u(a) = (d, c) ∈ T × Y . Now let us use some facts from differential
geometry (see Dieudonné [2], mainly 16.8.8).

U ∩ F−1(v(t)) is a closed submanifold of U whenever t ∈ T . The
tangent space of this submanifold in a point x ∈ U ∩ F−1(v(t)) is equal
to the subspace Nx of X. Clearly u−1 is a diffeomorphism of the closed
submanifold {t} × Y of T × Y onto U ∩ F−1(v(t)). Let

gi = pi ◦ u−1 if 1 ≤ i ≤ n.

By the choice of U , pi is a submersion of U ∩ F−1(v(t)) into Xi. Hence
the mapping

gi,t : Y → X
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is a submersion, that is, it has rank ri whenever y ∈ Y and t ∈ T .
Now, by Lemma 1, there exist open sets T ∗ and Y ∗ and there exists

a 0 < K < ∞ such that d ∈ T ∗ ⊂ T , c ∈ Y ∗ ⊂ Y , and

λk(B) ≤ Kλri(gi,t(B))

whenever B ⊂ Y ∗, t ∈ T ∗. Let X∗
i = Xi, A∗i = Ai and g∗i the restriction

of gi onto T ∗×Y ∗. Applying Corollary 1 to the sets and functions marked
by stars we have that the function

f(t) = λk

(
n⋂

i=1

g∗i,t
−1(Ai)

)
if t ∈ T ∗

is continuous on T ∗. By Lemma 2, g∗i,d
−1(Ai) has density 1 in the point c.

Because g−1
i,d (Ai) ∩ Y ∗ is measurable by Lemma 1 if 2 ≤ i ≤ n, we have

that
n⋂

i=1

g∗i,d
−1(Ai)

has density 1 in the point c. Hence f(d) > 0 and we have that there exists
a neighbourhood W of d for which

f(t) > 0 if t ∈ W .

Clearly v(W ) is a neighbourhood of b in Rm. If z ∈ v(W ) then t :=
v−1(z) ∈ W and hence the set

n⋂

i=1

g∗i,t
−1(Ai)

is nonvoid. If y is an element of this set then

F (u−1(t, y)) = v(p(t, y)) = v(t) = z

and
xi = pi(u−1(t, y)) = g∗i,t(y) ∈ Ai if 1 ≤ i ≤ n.

This means that F (x1, . . . , xn) = z. ¤

Remark. Our theorem may be stated in the following form : If dimNx

= r −m and pi(Nx) = Xi for all x ∈ U (i = 1, 2, . . . , n), A1 × A2 × . . .×
An ⊂ U moreover Ai is λri measurable for 2 ≤ i ≤ n and λri(Ai) > 0
(i = 1, 2, . . . , n), then F (A1 × . . .×An) contains a nonvoid open set.
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Corollary 3. Let U be an open subset of Rr × Rr and F : (x, y) 7→
F (x, y) a continuously differentiable mapping of U into Rr. Let A,B ⊂ Rr

and suppose that B is λr measurable. If (a, b) ∈ U ,

det
∂F

∂x
(a, b) 6= 0, det

∂F

∂y
(a, b) 6= 0,

A has density 1 in the point a and B has density 1 in the point b, then
F (A,B) is a neighbourhood of F (a, b).

Proof. By Theorem 2 we have to prove only that p1(Na,b) = Rr and
p2(Na,b) = Rr where Na,b is the nullspace of F ′(a, b). Let (x, y) ∈ Na,b. If
p1(x, y) = 0 then x = 0. Hence

0 = F ′(a, b)(x, y) =
∂F

∂y
(a, b)(y).

But
det

∂F

∂y
(a, b) 6= 0,

hence y = 0. This proves that p1 : Na,b → Rr is a one-to-one mapping,
that is, p1(Na,b) = Rr. Similarly p2(Na,b) = Rr.
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[14] A. Weil, L’intègration dans les groupes topologiques et ses applications, Paris,
1951.

ANTAL JÁRAI
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