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On Nemytskii operator in the space of set-valued
functions of bounded

p-variation in the sense of Riesz

By N. MERENTES (Caracas) and S. RIVAS (Caracas)

Abstract. We sonsider the Nemytskii operator, i.e. the composition operator
defined by (Nu) (t) = H(t, u(t)), where H is a given set-valued function. It is shown
that if the operator N maps the space of set-valued functions of bounded p-variation in
the sense of Riesz into the space of set-valued functions of bounded q-variation in the
sense of Riesz, there is 1 ≤ q ≤ p < ∞, and if it is globally Lipschitzian, then it has to be
of the form (Nu) (t) = A(t)u(t)+B(t), where A(t) are linear continuous set-valued and
B is a set-valued function of bounded q-variation in the sense of Riesz. This generalizes
results of G. Zawadzka [8], A. Smajdor and W. Smajdor [7], N. Merentes and
K. Nikodem [3].

Introduction

In [7] A. Smajdor and W. Smajdor proved that every Nemytskii
operator N , i.e. (Nu) (t) = H(t, u(t)) mapping the space Lip([a, b], cc(Y ))
into itself and globally Lipschitzian has to be of the form

(Nu)(t) = A(t)u(t) + B(t), u ∈ Lip([a, b], cc(Y )), t ∈ [a, b],

where A(t) are linear continuous set-valued functions and B is a set-
valued function belonging to the space Lip([a, b]), cc(Y )). For the first
time a theorem of such a type for single-valued functions was proved by
J. Matkowski [1] in the space of Lipschitz functions. Similar charac-
terizations of the Nemytskii operator have been also obtained by G. Za-
wadzka (see [8]) in the space of set-valued functions of bounded variation
in the classical Jordan sense. For single-valued functions it was proved by
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J. Matkowski and J. Mís [2]. Recently N. Merentes and K. Nikodem
(see [3]) proved an analogous theorem in the space of set-valued functions
of bounded p-variation in the sense of Riesz. The aim of this paper is prove
an analogous result in the case when the Nemytskii operator N maps the
space of set-valued functions of bounded p-variation in the sense of Riesz
into the space of set-valued functions of bounded q-variation in the sense
of Riesz, where 1 ≤ q ≤ p < ∞ and N is globally Lipschitzian. The
particular cases p = q has been already considered by N. Merentes and
K. Nikodem (see [3]), but the present case of possibly different spaces
requires a different proof technique, and this extension may turn out to be
useful in some applications.

1. Preliminary results

Let (X, ‖ · ‖) be a normed space and p ≥ 1 be a fixed number. Given
a function u : [a, b] → X and a partition π : a = t0 < · · · < tn = b of the
interval [a, b], we define:

σp(u; π) :=
n∑

i=1

‖u(ti)− u(ti−1)‖p

|ti − ti−1|p−1
.

The number:

Vp(u, [a, b];X) := sup
π

σp(u, π),

where the supremum is taken over all partitions π of [a, b], is called the
p-variation of u in [a, b]. A function u is said to be of bounded p-variation
if Vp(u, [a, b];X) < ∞. Denote by RVp([a, b], X) the space of all functions
u : [a, b] → X of bounded p-variation equipped with the norm

‖u‖p := ‖u(a)‖+ (Vp(u, [a, b];X))
1
p .

Clearly, for p = 1 the space RV1([a, b], X) coincides with the classical
space BV ([a, b], X) of functions of bounded variation. In the particular
case when X = R and 1 < p < ∞, then we have the space RVp[a, b] of
functions of bounded Riesz p-variation, and the following characterization
is well-known:

Lemma 1 (see [5]). u ∈ RVp([a, b],R) if and only if u is absolutely
continuous on [a, b] and its derivative u′ ∈ Lp([a, b];R). In that case we
also have the equality

Vp(u, [a, b];R) =

b∫

a

|u′(t)|pdt.
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Let cc(X) be the family of all non-empty convex compact subsets of
X and D be the Hausdorff metric in cc(X), i.e.

D(A, B) := inf{t > 0 : A ⊆ B + tS, B ⊆ A + tS},
where S = {y ∈ X : ‖y‖ ≤ 1}.

We say that a set-valued function F : [a, b] → cc(X) has bounded
p-variation (1 ≤ p < ∞) if

Wp(F, [a, b]; cc(X)) := sup
π

n∑

i=1

(D(F (ti), F (ti−1))p

|ti − ti−1|p−1
< ∞,

where the supremum is taken over all partitions π of [a, b].
Denote by RWp([a, b]; cc(X)) the space of all set-valued functions F :

[a, b] → cc(X) of bounded p-variation equipped with the metric

Dp(F1, F2) :=

D(F1(a), F2(a)) +

(
sup

π

n∑

i=1

(D(F1(ti) + F2(ti−1), F1(ti−1) + F2(ti)))p

|ti − ti−1|p−1

) 1
p

.

Clearly, for p = 1 the space RW1([a, b]; cc(X)) coincides with the
space BV ([a, b]; cc(X)) of set-valued functions of bounded variation.

Now, let (X‖ · ‖), (Y, ‖ · ‖) be two normed spaces and K be a convex
cone in X. Given a set-valued function H : [a, b]×K → cc(Y ) we consider
the Nemytskii operator N genereted by H, that is the composition operator
defined by:

(Nu)(t) := H(t, u(t)), u : [a, b] → K, t ∈ [a, b].

We denote by L(K; cc(Y )) the space of all set-valued function A :
K → cc(Y ) additive and positively homogeneous. We say that A is linear
if A ∈ L(K; cc(Y )).

In the proof of the main results of this paper we will use some facts
which we list here as lemmas.

Lemma 2 (see [6], Lemma 3). Let (X, ‖·‖) be a normed space and let
A, B, C be subsets of X. If A, B are convex compact and C is non-empty
and bounded, then

D(A + C,B + C) = D(A,B).
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Lemma 3 (see [4], Th. 5.6). Let (X, ‖ · ‖), (Y ‖ · ‖) be normed spaces
and K be a convex cone in X. A set-valued function F : K → cc(Y )
satisfies the Jensen equation

F

(
x + y

2

)
=

1
2
(F (x) + F (y)), x, y ∈ K,

if and only if there exists an additive set-valued function A : K → cc(Y )
and a set B ∈ cc(Y ) such that F (x) = A(x) + B, x ∈ K.

Lemma 4. If F ∈ RWp([a, b], cc(Y )) with p > 1, then F is continuous.
In the case p = 1, we have F−(·, x) ∈ BW ([a, b], cc(Y )) for all x ∈ K,
where

F−(t, x) :=

{
lim
s↑t

F (s, x), t ∈ (a, b], x ∈ K,

F (a, x), t = a, x ∈ K.

Proof. For 1 < p < ∞, this follows immediately from the inequality

D(F (t), F (t0)) =
(

(D(F (t), F (t0)))p|t− t0|p−1

|t− t0|p−1

) 1
p

≤ Wp(F, [a, b]; cc(Y ))|t− t0|1−
1
p .

For the case p = 1, see [8].

2. Main results

In this section we shall present a characterization of functions H :
[a, b] × K → cc(Y ) for which the Nemytskii operator N generated by
H maps the space RVp([a, b],K) into the space RWq([a, b], cc(Y )), where
1 < q < p, and it is globally Lipschitzian. On the other hand if 1 < p < q,
then the Nemytskii operator N is constant.

Theorem 1. Let (X, ‖ · ‖), (Y, ‖ · ‖) be normed spaces and K be a
convex cone in X and 1 < q < p. If the Nemytskii operator N generated by
a set-valued function H : [a, b]×K → cc(Y ) maps the space RVp([a, b],K)
into the space RWq([a, b], cc(Y )) and if it is globally Lipschitzian, then the
set-valued function H satisfies the following conditions:

a) For all t ∈ [a, b] there exists M(t), such that

(1) D(H(t, x),H(t, y)) ≤ M(t)‖x− y‖ (x, y ∈ X)
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b) H(t, x) = A(t)x + B(t) (t ∈ [a, b], x ∈ K),
where A : [a, b] → L(K, cc(Y )) and B ∈ RWq([a, b], cc(Y )).

Proof. The Nemytskii operator N is globally Lipschitzian, then
there exists a constant M , such that

Dq(Nu1, Nu2) ≤ M‖u1 − u2‖p (u1, u2 ∈ RVp([a, b],K)).

Let t ∈ (a, b]. Using the definition of the operator N and of the metric
Dq we have

(2)
Dq(H(t, u1(t))) + H(a, u2(a)),H(a, u1(a)) + H(t, u2(t))) ≤
≤ M |t− a|1− 1

q ‖u1 − u2‖p, (u1, u2 ∈ RVp([a, b], K)).

Define the function α : [a, b] → [0, 1] by:

α(τ) :=





τ − a

t− a
, a ≤ τ ≤ t,

1, t ≤ τ ≤ b.

The function α ∈ RVp[a, b] and

Vp(α; [a, b]) =
1

|t− a|p−1
.

Let us fix x, y ∈ K and define the functions ui : [a, b] → K (i = 1, 2)
by:

(3) u1(τ) := x, τ ∈ [a, b], u2(τ) := α(τ)(y − x) + x, τ ∈ [a, b].

The functions ui ∈ RVp([a, b],K) (i = 1, 2) and

‖u1 − u2‖p = (Vp(α; [a, b]))
1
p ‖x− y‖ =

‖x− y‖
|t− a|1− 1

p

.

Hence, substituting in inequality (2) the particular functions ui

(i = 1, 2) defined by (3), we obtain

(4) D(H(t, x) + H(a, x),H(a, x) + H(t, y)) ≤ M
|t− a|1− 1

q

|t− a|1− 1
p

‖x− y‖,

for all t ∈ [a, b], x, y ∈ K.
By Lemma 2 and the inequality (4) we have

D(H(t, x), H(t, y)) ≤ M
|t− a|1− 1

q

|t− a|1− 1
p

‖x− y‖,
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for all t ∈ (a, b], x, y ∈ K.
Now, let t = a. Define the function β : [a, b] → [0, 1] by

β(τ) :=
τ − a

b− a
, (τ ∈ [a, b]).

The function β ∈ RVp[a, b] and

β(τ) =
1

|b− a|p−1
.

Let us fix x, y ∈ K and define the functions ui : [a, b] → K (i = 1, 2)
by

(5) u1(τ) := x τ ∈ [a, b], u2(τ) := β(τ)(x− y) + y, τ ∈ [a, b].

The functions ui ∈ RVp([a, b],K) (i = 1, 2) and

‖u1 − u2‖p =
(
1 + (Vp(β; [a, b]))

1
p

)
‖x− y‖ =

(
1 +

1

|b− a|1− 1
p

)
‖x− y‖.

Hence, substituting in the inequality (2), the particular functions ui

(i = 1, 2) defined by (5), we obtain

D(H(b, x) + H(a, y),H(a, x) + H(b, x)) ≤

≤ M |b− a|1− 1
q

(
1 +

1

|b− a|1− 1
p

)
‖x− y‖.

By Lemma 2 and the above inequality, we have

D(H(a, y),H(a, x)) ≤ M |b− a|1− 1
q

(
1 +

1

|b− a|1− 1
p

)
‖x− y‖.

Define the function M : [a, b] → R by

M(t) :=





M
|t− a|1− 1

q

|t− a|1− 1
p

, a < t ≤ b,

M |b− a|1− 1
q

(
1 + 1

|b−a|1−
1
p

)
, t = a.

Hence

D(H(t, x),H(t, y)) ≤ M(t)‖x− y‖ (x, y ∈ X, t ∈ [a, b]),

and, consequently, for every t ∈ [a, b] the function H(t, ·) : K → cc(Y ) is
continuous.
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Next we shall prove that H satisfies equality b).
Let us fix t, t0 ∈ [a, b] such that t0 < t. Since the Nemytskii operator

N is globally Lipschitzian, there exists a constant M , such that

D(H(t, u1(t)) + H(t0, u2(t0)), H(t0, u1(t0)) + H(t, u2(t))) ≤(6)

≤ M‖u1 − u2‖p |t− t0|1−
1
q .

Define the function γ : [a, b] → [0, 1] by

γ(τ) :=





τ − a

t0 − a
, a ≤ τ ≤ t0,

− τ − t

t− t0
, t0 ≤ τ ≤ t,

0, t ≤ τ ≤ b.

The function γ ∈ RVp[a, b].
Let us fix x, y ∈ K and define the functions ui : [a, b] → K by

(7)
u1(τ) :=

γ(τ)
2

x +
(

1− γ(τ)
2

)
y, (τ ∈ [a, b])

u2(τ) :=
1 + γ(τ)

2
x +

1− γ(τ)
2

y, (τ ∈ [a, b]).

The functions ui ∈ RVp([a, b],K) (i = 1, 2) and

‖u1 − u2‖p =
‖x− y‖

2
.

Hence, substituting in the inequality (6) the particular functions ui

(i = 1, 2) defined by (7), we obtain

D

(
H(t0, x) + H(t, y),H

(
t0,

x + y

2

)
+ H

(
t,

x + y

2

))
≤(8)

≤ M

2
|t− t0|1−

1
q ‖x− y‖.

Since N maps RVp([a, b],K) into RWq([a, b], cc(Y )) (1 < q < p), then
H(·, z) is continuous for all z ∈ K. Hence, letting t0 ↑ t in the inequality
(8), we get

D

(
H(t, x) + H(t, y),H

(
t,

x + y

2

)
+ H

(
t,

x + y

2

))
= 0,

for all t ∈ [a, b] and x, y ∈ K.
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Thus for all t ∈ [a, b], x, y ∈ K, we have

H

(
t,

x + y

2

)
+ H

(
t,

x + y

2

)
= H(t, x) + H(t, y).

Since that values of H are convex, we have

(9) H

(
t,

x + y

2

)
=

1
2
(H(t, x) + H(t, y)),

for all t ∈ [a, b], x, y ∈ K. Thus for all t ∈ [a, b], the set-valued func-
tion H(t, ·) : K → cc(Y ) satisfies the Jensen equation (9). Now by the
Lemma 3, there exists an additive set-valued function A(t) : K → cc(Y )
and a set B(t) ∈ cc(Y ), such that

H(t, x) = A(t)(x) + B(t), (x ∈ K, t ∈ [a, b]).

Substituting H(t, x) = A(t)(x) + B(t) into inequality (1), we obtain,
for all t ∈ [a, b] that there exists M(t), such that

D(A(t)(x), A(t)(y)) ≤ M(t)‖x− y‖ (x, y ∈ K),

consequently, the set-valued function A(t) : K → cc(Y ) is continuous, and
A(t)(·) ∈ L(K, cc(Y )).

A(t)(·) is additive and 0 ∈ K, then A(t) = {0}, thus H(·, 0) = B(·).
The Nemytskii operator N maps the space RVp([a, b], K) into the

space RWq([a, b], c(Y )), then H(·, 0) = B(·) ∈ RWq([a, b],K). Conse-
quently the set-valued function H has to be of the form

H(t, x) = A(t)(x) + B(t),

for all t∈[a, b], x∈K, where A(t)∈L(K, cc(Y )) and B∈RWq([a, b], cc(Y )).

Theorem 2. Let (X, ‖ · ‖), (Y, ‖ · ‖) be normed spaces, K a convex
cone in X and 1 < p < q. If the Nemytskii operator N generated by a
set-valued function H : [a, b] ×K → cc(Y ) maps the space RVp([a, b],K)
into the space RWq([a, b], cc(Y )) and if it is globally Lipschitzian, then the
set-valued function H satisfies the following condition

H(t, x) = H(t, 0) (t ∈ [a, b], x ∈ K);

i.e. the Nemytskii operator is constant.

Proof. Since the Nemytskii operator N is globally Lipschitzian be-
tween RVp([a, b], K) and the space RWq([a, b], cc(Y )), 1 < p < q, then
there exists a constant M , such that

Dq(Nu1, Nu2) ≤ M‖u1 − u2‖p (u1, u2 ∈ RVp([a, b],K)).
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Let us fix t, t0 ∈ [a, b] such that t0 < t. Using the definitions of the
operator N and of the metric Dq, we have

D(H(t, u1(t)) + H(t0, u2(t0)),H(t0, u1(t0)) + H(t, u2(t)) ≤(10)

≤ M |t− t0|1−
1
q ‖u1 − u2‖p, (u1, u2 ∈ RVp([a, b],K).

Define the function α : [a, b] → [0, 1] by

α(τ) :=





1, a ≤ τ ≤ t0,

− τ − t

t− t0
, t0 ≤ τ ≤ t,

0, t ≤ τ ≤ b.

The function α ∈ RVp[a, b] and

Vp(α; [a, b]) =
1

|t− t0|p−1
.

Let us fix x ∈ K and define the functions ui : [a, b] → K (i = 1, 2) by

(11) u1(τ) := x τ ∈ [a, b], u2(τ) := α(τ)x τ ∈ [a, b].

The functions ui ∈ RVp([a, b],K) (i = 1, 2) and

‖u1 − u2‖p =
‖x‖

|t− t0|1−
1
p

.

Hence, substituting in the inequality (10) the particular functions ui

(i = 1, 2) defined by (11), we obtain

D(H(t, x) + H(t0, x),H(t0, x) + H(t, 0)) ≤ M
|t− t0|1−

1
q

|t− t0|1−
1
p

‖x‖.

By Lemma 2 and the above inequality, we get

D(H(t, x),H(t, 0)) ≤ M
|t− t0|1−

1
q

|t− t0|1−
1
p

‖x‖.

Since q > p. Letting t0 ↑ t in the above inequality, we have D(H(t, x),
H(t, 0)) = 0, thus for all t ∈ [a, b] and for all x ∈ K, we get

H(t, x) = H(t, 0).
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Theorem 3. Let (X, ‖ · ‖), (Y, ‖ · ‖) be normed spaces, K be a convex
cone in X and 1 < p < ∞. If the Nemytskii operator N generated by a
set-valued function H : [a, b] ×K → cc(Y ) maps the space RVp([a, b],K)
into the space BW ([a, b], cc(Y )) and if it is globally Lipschitzian, then the
left regularization H∗ : [a, b]×K → cc(Y ) of the function H defined by

H∗(t, x) :=

{
H−(t, x), t ∈ (a, b], x ∈ K,

lim
s↓a

H(s, x), t = a, x ∈ K,

satisfies the following conditions:
a) for all t ∈ [a, b] there exists M(t), such that

D1(H∗(t, x),H∗(t, y)) ≤ M(t)‖x− y‖ (x, y ∈ X)

b) H∗(t, x) = A(t)x + B(t) (t ∈ [a, b], x ∈ K), where A(t) is linear
continuous set-valued function, and B ∈ BW ([a, b], cc(Y )).

Proof. Take t ∈ [a, b], and define the function α : [a, b] → [0, 1] by:

α(t) :=





1, a ≤ τ ≤ t,

τ − b

t− b
, t ≤ τ ≤ b.

The function α ∈ RVp[a, b] and

Vp(α, [a, b]) =
1

|b− t|p−1
.

Let us fix x, y ∈ K and define the functions ui : [a, b] → K (i = 1, 2) by

(12) u1(τ) := x τ ∈ [a, b], u2(τ) := α(τ)(y − x) + x, τ ∈ [a, b].

The functions ui ∈ RVp([a, b],K) (i = 1, 2) and

‖u1 − u2‖p = (Vp(α; [a, b]))
1
p ‖x− y‖ =

(
1 +

1

|b− t|1− 1
p

)
‖x− y‖.

Since the Nemytskii operator N is globally Lipschitzian between
RVp([a, b],K) and BW ([a, b], cc(Y )), then there exists a constant M , such
that

D(H(b, u1(b)) + H(t, u2(t)),H(t, u1(t)) + H(b, u2(b)) ≤ M‖u1 − u2‖p.

By Lemma 2, substituting the particular functions ui (i = 1, 2) defined
by (12) in the above inequality, we obtain

(13) D(H(t, x),H(t, y)) ≤ M(t)‖x− y‖ (x, y ∈ K, t ∈ [a, b]),
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where

M(t) := M

[
1 +

1

|b− t|1− 1
p

]
.

In the case where t = b, by a similar reasoning as above, we obtain
that there exists a constant M(b), such that

(14) D(H(b, x),H(b, y)) ≤ M(b)‖x− y‖ (x, y ∈ K).

Hence, passing to the limit in the inquality (13) by the inequality (14)
and the definition of H∗ we have for all t ∈ [a, b] that there exists M(t),
such that

D(H∗(t, x),H∗(t, y)) ≤ M(t)‖x− y‖ (x, y ∈ K).

Now we shall proof that H∗ satisfies the following equality

H∗(t, x) = A(t)x + B(t) (t ∈ [a, b], x ∈ K),

where A(t) is linear continuous set-valued functions, and
B ∈ BW ([a, b], cc(Y )).

Let us fix t, t0 ∈ [a, b], n ∈ N such that t0 < t. Define the partition
πn of the interval [t0, t] by πn : a < t0 < t1 < · · · < t2n−1 < t2n = t, where

ti − ti−1 =
t− t0
2n

, i = 1, 2, . . . ., 2n.

The Nemytskii operator N is globally Lipschitzian between
RV p([a, b],K) and BW ([a, b], cc(Y )), then there exists a constant M , such
that

(15)

n∑

i=1

D(H(t2i, u1(t2i)) + H(t2i−1, u2(t2i−1)),

H(t2i−1, u1(t2i−1)) + H(t2i, u2(t2i))) ≤ M‖u1 − u2‖
(u1, u2 ∈ BVp([a, b], K)).

Define the function α : [a, b] → [0, 1] in the following way:

α(τ) :=





0, a ≤ τ ≤ t0,
τ − ti−1

ti − ti−1
, ti−1 ≤ τ ≤ ti, i = 1, 3, . . . , 2n− 1,

− τ − ti
ti − ti−1

, ti−1 ≤ τ ≤ ti, i = 2, 4, . . . , 2n,

0, t ≤ τ ≤ b.
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The function α ∈ RVp([a, b]) and

Vp(α; [a, b]) =
2pnp

|t− t0|p−1
.

Let us fix x, y ∈ K and define the functions ui : [a, b] → K by:

(16)
u1(τ) :=

α(τ)
2

x +
(

1− α(τ)
2

y

)
, (τ ∈ [a, b])

u2(τ) :=
1 + α(τ)

2
x +

1− α(τ)
2

y, (τ ∈ [a, b]).

The functions ui ∈ RVp([a, b],K) (i = 1, 2) and

‖u1 − u2‖p =
‖x− y‖

2
.

Substituting in the inequality (15) the particular functions ui (i = 1, 2)
defined in (16), we obtain

n∑

i=1

D

(
H(t2i−1, x) + H(t2i, y),H

(
t2i−1,

x + y

2

)
+ H

(
t2i,

x + y

2

))
≤

≤ M

2
‖x− y‖,(17)

for all x, y ∈ K.
The Nemytskii operator N maps the space RV p([a, b],K) into the

space BW ([a, b], cc(Y )), then for all z ∈ K, the function
H(·, z) ∈ BW ([a, b], cc(Y )). Letting t0 ↑ t in the inequality (17), we get

D

(
H∗(t, x) + H∗(t, y), H∗

(
t,

x + y

2

)
+ H∗

(
t,

x + y

2

))
≤ M

2n
‖x− y‖.

Passing to the limit when n →∞, we get

H∗
(

t,
x + y

2

)
+H∗

(
t,

x + y

2

)
+H∗(t, y)+H∗(t, x), (t ∈ [a, b], x, y ∈ K).

H∗(t, x) is a convex set, then

H∗
(

t,
x + y

2

)
=

1
2
(H∗(t, x) + H∗(t, y)) (t ∈ [a, b], x, y ∈ K).

Thus for every t ∈ [a, b], the set-valued function H∗(t, ·) satisfies the
Jensen equation. By Lemma 3 and by the property a) previously es-
tablished, we get that for all t ∈ [a, b] there exist an additive set-valued
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function A(t) : K → cc(Y ) and a set B(t) ∈ cc(Y ), such that

H∗(t, x) = A(t)x + B(t) (t ∈ [a, b], x ∈ K).

By the same reasoning as in the proof of Theorem 1, we obtain that
A(t)(·) ∈ L(K, cc(Y )) and B ∈ BW ([a, b]cc(Y )).
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