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Stability properties of functional equations
in several variables

By LÁSZLÓ SZÉKELYHIDI (Kuwait)

1. Introduction

Let S be a semigroup and we consider the functional equation

(1) F (x, y) + F (xy, z) = F (x, yz) + F (y, z)

where F : S × S → C is a function and (1) is supposed to hold for all x, y
in S. It is easy to check that (1) holds for any F of the form

(2) F (x, y) = f(xy)− f(x)− f(y)

where f : S → C is any function. The converse of this statement for
symmetric F on any Abelian group S has been proved in [7]. The proof
depends heavily on the commutative structure of S. The general solution
of (1) has also been found on several classes of commutative semigroups,
see e.g. [2]. Now we prove that any bounded solution F of (1) has a
representation of the form (2) with a bounded f , if S is an amenable
semigroup. Concerning amenable groups and semigroups the reader should
refer to [5], [6]. Further we study the stability of (1). Again, let S be a
semigroup, F : S × S → C a function, and suppose, that the three-place
function

(x, y, z)→F (x, y)+F (xy, z)−F (x, yz)− F (y, z)

is bounded on S × S × S. In the classical cases of Hyers–Ulam stability
this implies that F −K satisfies (1) with some bounded K. Here we prove
that this is the case.
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In the second part we study the functional equation

(3) F (xy, z) + F (xy−1, z)− 2F (y, z) = F (x, yz) + F (x, yz−1)− 2F (x, y)

with F : S × S → C, where S is a group. Equation (3) has been arisen in
[9], where the question concerning (3) was, whether any solution F of (3)
can be represented in the form

(4) F (x, y) = f(xy) + f(xy−1)− 2f(x)− 2f(y).

(Obviously, any F of the form (4) satisfies (3) if S is commutative.) This
question has been answered in [3] in the negative, by presenting a coun-
terexample. Nevertheless, the problem of the general solution of (3) re-
mains open. In [4] it has been proved that in the case S = R any twice
differentiable solution of (3) has the form (4) (with twice differentiable f).
Here we show, that any bounded solution of (3) has the form (4) with
bounded f , if the group S is amenable. Further, we show that equation
(3) has the similar remarkable stability property, like equation (1): if the
function F : S × S → C has the property, that the function

(x, y, z)→F (xy, z)+F (xy−1, z)−2F (y, z)−F (x, yz)−F (x, yz−1)+2F (x, y)

is bounded, then F −K is a solution of (3) with a bounded function K,
supposing S is Abelian.

2. The functional equation (1)

Concerning (1) we first prove the following theorem:

Theorem 2.1. Let S be a right amenable semigroup and let F : S ×
S → C be a bounded function satisfying (1). Then there exists a unique
bounded function f : S → C with

F (x, y) = f(xy)− f(x)− f(y)

for all x, y in S.

Proof. Let M denote any right invariant mean defined on the set of
all bounded complex valued functions on S and we write Mx to indicate
that M is applied on the argument as a function of x. Now apply M on
both sides of (1) as functions of x, for any fixed y, z in S. We obtain

Mx[F (x, y)] + Mx[F (xy, z)] = Mx[F (x, yz)] + Mx[F (y, z)],

that is, by the right invariance of M and by M(1) = 1,

Mx[F (x, y)] + Mx[F (x, z)] = Mx[F (x, yz)] + F (y, z),
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hence we may choose
f(y) = Mx[F (x, y)]

for all y in S. As F is bounded, it follows that f is bounded. For the
uniqueness of f it is easy to see that the difference of two f ’s is a complex
homomorphism of S, which cannot be bounded unless it is zero. Hence
our theorem is proved.

Now our stability theorem follows for (1).

Theorem 2.2. Let S be a right amenable semigroup and let F : S ×
S → C be a function, for which the function

(x, y, z) → F (x, y) + F (xy, z)− F (x, yz)− F (y, z)

is bounded. Then there exists a function Φ : S ×S → C satisfying (1), for
which F − Φ is bounded.

Proof. We define the function Φ : S × S → C by the formula

Φ(y, z) = Mx[F (x, y) + F (xy, z)− F (x, yz)]

for all y, z in S, where M denotes an arbitrary right invariant mean defined
on all bounded complex valued functions on S. Then we have for all y, z

Φ(y, z) + Φ(yz, u)− Φ(y, zu)− Φ(z, u) =

= Mx[F (x, y) + F (xy, z)− F (x, yz) + F (x, yz)+

+F (xyz, u)− F (x, yzu)− F (x, y)− F (xy, zu) + F (x, yzu)−
−F (x, z)− F (xz, u) + F (x, zu)] =

= Mx[{F (xy, z) + F (xyz, u)− F (xy, zu)}−
−{F (x, z) + F (xz, u)− F (x, zu)}] = 0,

by the right invariance of M . On the other hand, it follows

F (y, z)− Φ(y, z) = Mx[F (y, z) + F (x, yz)− F (x, y)− F (xy, z)],

which is bounded, by the properties of M and F . Hence our theorem is
proved.
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3. The functional equation (3)

Concerning (3) we first prove the following theorem:

Theorem 3.1. Let S be an amenable group and let F : S × S → C
be a bounded function satisfying (3). Then there exists a unique bounded
function f : S → C with

F (x, y) = f(xy) + f(xy−1)− 2f(x)− 2f(y)

for all x, y in S.

Proof. Let M denote any invariant mean defined on the set of all
bounded complex valued functions on S. If we apply M on both sides of
(3) as functions of x, for any fixed y, z in S, then we obtain

Mx[F (xy, z)] + Mx[F (xy−1, z)]− 2Mx[F (y, z)] =

= Mx[F (x, yz)] + Mx[F (x, yz−1)]− 2Mx[F (x, y)],

that is, by the properties of M

Mx[F (x, z)] + Mx[F (x, z)]− 2F (y, z) =

= Mx[F (x, yz)] + Mx[F (x, yz−1)]− 2Mx[F (x, y)],

which shows that our statement holds if we choose

f(y) = −1
2
Mx[F (x, y)]

for all y in S. The boundedness of f follows from the properties of M .
The uniqueness of f follows similarly as in Theorem 2.1.

For the stability theorem for equation (3) we need also commutativity
on S.

Theorem 3.2. Let S be an Abelian group and let F : S × S → C be
a function, for which the function

(x, y, z) → F (x + y, z) + F (x− y, z)− 2F (y, z)−
−F (x, y + z)− F (x, y − z) + 2F (x, y)

is bounded. Then there exists a function Φ : S ×S → C satisfying (3), for
which F − Φ is bounded.

Proof. We define the function Φ : S × S → C by the formula

Φ(y, z)=−1
2
Mx[−F (x+y, z)−F (x−y, z)+F (x, y+z)+F (x, y−z)−2F (x, y)]
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for any y, z in S, where M is an invariant mean on S. Now we can compute
as follows

Φ(y + z, u)+Φ(y − z, u)−2Φ(z, u)− Φ(y, z + u)− Φ(y, z − u) + 2Φ(y, z)=

= −1
2
Mx[−F (x + y + z, u)− F (x− y − z, u) + F (x, y + z + u)+

+F (x, y + z − u)− 2F (x, y + z)− F (x + y − z, u)− F (x− y + z, u)+

+F (x, y − z + u) + F (x, y − z − u)− 2F (x, y − z) + 2F (x + z, u)+

+2F (x− z, u)− 2F (x, z + u)− 2F (x, z − u) + 4F (x, z)+

+F (x + y, z + u) + F (x− y, z + u)− F (x, y + z + u)− F (x, y − z − u)+

+2F (x, y) + F (x + y, z − u) + F (x− y, z − u)− F (x, y + z − u)−
−F (x, y + u− z) + 2F (x, y)− 2F (x + y, z)− 2F (x− y, z)+

+2F (x, y + z) + 2F (x, y − z)− 4F (x, y)] =

= −1
2
Mx[{−F (x + y + z, u)−− F (x + y − z, u) + F (x + y, z + u)+

+F (x + y, z − u)− 2F (x + y, z)}+ {F (x + z, u) + F (x− z, u)−
−F (x, z + u)− F (x, z − u) + 2F (x, z)}]− 1

2
Mx[{−F (x− y + z, u)−

−F (x− y − z, u) + F (x− y, z + u) + F (x− y, z − u)− 2F (x− y, z)}+
+{F (x + z, u) + F (x− z, u)− F (x, z + u)− F (x, z − u) + 2F (x, z)}]=0

by the invariance of M . On the other hand,

F (y, z)− Φ(y, z) =
1
2
Mx[2F (y, z)− F (x + y, z)− F (x− y, z)+

+F (x, y + z) + F (x, y − z)− 2F (x, y)]

which is bounded, by the properties of M and F . Hence our theorem is
proved.

We note, that actually we haven’t used the commutativity of S, only
the following property of F :

F (xyz, uvw) = F (xzy, uwv)

and the fact, that there exists a right invariant mean on S. A similar
condition to this one has been used for functions of one variable in [1], [8],
[10]. Hence we can prove the following corollary.

Corollary 3.3. Let S be an amenable group and let F : S × S → C
be a function, which satisfies

F (xyz, uvw) = F (xzy, uwv)
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for all x, y, z, u, v, w in S, and for which the function

(x, y, z) → F (xy, z)+F (xy−1, z)−2F (y, z)−F (x, yz)−F (x, yz−1)+2F (x, y)

is bounded. Then there exists a function Φ : S ×S → C satisfying (3), for
which F − Φ is bounded.
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