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Watson integral transforms on new spaces
of functions and distributions

By J. J. BETANCOR (La Laguna) and C. JEREZ (La Laguna)

Abstract. In this paper we investigate Watson integral transformations in new
spaces of functions and distributions. In the procedure developed the Mellin integral
transformation plays an essential role. Our investigation includes many important well-
known special cases: H-transformation, Krätzel transformation, Riemann-Liouville and
Weyl fractional integrals, amongst others.

1 Introduction

The study of integral transformations in spaces of generalized func-
tions has been an active area of work in the last years. As it is well-known
there exist two ways to define integral transforms of distributions, the ad-
joint and the kernel methods. The adjoint method has been employed by
A.H. Zemanian [21], J.M. Mendez [10] and R.S. Pathak [11] amongst
others. The kernel method was used by A.H. Zemanian [20], E.L. Koh
and A.H. Zemanian [9] and L.S. Dube and J.N. Pandey [6].

In [2] and [3] J.A. Barrios and J.J. Betancor defined the Kν trans-
formation and the Krätzel transformation of generalized functions through
the adjoint method. They developed a technique, inspired by the papers of
A. Schuitman ([14] and [15]) and B.L.J. Braaksma and A. Schuitman
[4], where the Mellin integral transformation plays an important role.

In this paper we modify the procedure employed in [2] and [3] to define
new integral transformations on spaces of generalized functions. We shall
investigate the integral transform defined by

(1) W (φ)(x) =
∫ ∞

0

k(xt)φ(t)dt
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where k(x) = 1
2π i

∫ c+i∞
c−i∞ x−sK(s)ds for some c ∈ R, K(s) being a suitable

meromorphic function with real poles. The integral transforms in (1) are
usually called Watson transformations. In Section 2 we introduce new
Fréchet spaces of functions and we analyze the behaviour of the Mellin
transformation over them. The W-transformation, when K(s) has a po-
tential growth as | Im s| → ∞, is investigated in Section 3 on the spaces
which were introduced in the previous paragraph. The integral transfor-
mation (1) of distributions is defined in Section 4 by using the adjoint
method. In Section 5 we consider new Fréchet function spaces on which
the W-transformation is a homeomorphism when K(s) has an exponential
growth as | Im s| → ∞. To finish we list in Section 6 some known integral
transformations that can be seen as special cases of the theory developed.

Throughout this paper we will denote by I the open interval (0 , ∞).
As usual the space D (I) consists of all complex valued smooth functions
having compact support on I and we represent by E (I) the spaces of
complex valued smooth functions on I. D (I) and E (I) are endowed with
the usual topologies ([21]).

2 Some new function spaces

In this Section we introduce new function spaces on which we shall
define the Watson transformation (1) in the next paragraph.

Let {an}∞n=1 be a sequence of real numbers such that inf {an − an+1 :
n ∈ N} > 0. Let {bn}∞n=1 be a sequence of real numbers such that
inf {bn+1 − bn : n ∈ N} > 0. Moreover we assume that a1 < b1.

The space A ({an}∞n=1 , {bn}∞n=1) is constituted by all those complex
valued smooth functions φ(x) , x ∈ I, for which the quantity

γm
` , k(φ) = sup

x∈I

∣∣∣∣∣x
m(ak+1−b`+1)

∏̀

i=1

(
xbi+1−bi+1 d

dx

)
·

·

xb1−ak+1

k∏

j=1

(
xaj+1−aj+1 d

dx

)
(xa1φ(x))




∣∣∣∣∣∣

is finite for every l, k ∈ N and m = 0, 1. Here and throughout this paper
0∏

i=1

is understood as 1. The space A ({an}∞n=1 , {bn}∞n=1) is endowed with

the topology generated by the family of seminorms
{

γm
` , k

}
`,k∈N , m=0,1

. By

using a standard procedure (A.H. Zemanian [21], p. 131, and A. Zayed
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[19]) we can prove that A ({an}∞n=1 , {bn}∞n=1) is a Fréchet space. More-
over the inclusions

D (I) ⊂ A ({an}∞n=1 , {bn}∞n=1) ⊂ E (I)

hold and each of these inclusions is continuous.
Let ε > 0 be such that b1 − a1 > 2ε , an+1 + ε < an and bn +

ε < bn+1, n ∈ N. We introduce the space Bε ({an}∞n=1 , {bn}∞n=1) that
consists of all the meromorphic functions Φ(s) satisfying the following two
conditions:

(i) Φ is holomorphic in C− ({an}∞n=1 ∪ {bn}∞n=1) and Φ(s) has at most
simple poles in s = an and s = bn , n ∈ N, and

(ii) ωε
`,k (Φ) = sup

s∈Vε(k,`)

∣∣∣∣∣∣
∏̀

i=1

(s− bi)
k∏

j=1

(s− aj)Φ(s)

∣∣∣∣∣∣
< ∞,

where Vε(k, `)= {s ∈ C : ak+1 + ε ≤ Re s ≤ b`+1 − ε}, for every l, k ∈ N.
We consider in Bε ({an}∞n=1, {bn}∞n=1) the topology defined by the fam-

ily of seminorms
{

ωε
`,k

}
`,k∈N

. Thus Bε ({an}∞n=1 , {bn}∞n=1) is a Fréchet

space. Moreover Bε ({an}∞n=1 , {bn}∞n=1) is continuously contained in
H (C− ({an}∞n=1 ∪ {bn}∞n=1)) (the space of holomorphic functions in C −
({an}∞n=1 ∪ {bn}∞n=1), where H (C− ({an}∞n=1 ∪ {bn}∞n=1)) is equipped as
usual, with the topology of the uniform convergence on the compact sub-
sets of C−({an}∞n=1 ∪ {bn}∞n=1). As it is easy to see, the space Bε({an}∞n=1,
{bn}∞n=1) does not depend on ε provided that ε > 0, b1 − a1 > 2ε, an >

an+1 + ε and bn+1 > bn + ε, n ∈ N. Hence, in the sequel we will write
B ({an}∞n=1, {bn}∞n=1), ω`,k and V (k, `) instead of Bε ({an}∞n=1 , {bn}∞n=1),
ωε

`,k and Vε(k, `).

As it is well-known the Mellin transform Mφ of φ is defined by

(Mφ) (s) =
∫ ∞

0

ts−1φ(t)dt , s ∈ Ω,

where Ω is a subset of the complex plane. The Mellin integral transforma-
tion plays an important role in our study. In the following we shall prove
that M is a homeomorphism between the function spaces that we have
introduced at the beginning of the paragraph.

Proposition 1. The Mellin integral transformation is a homeomor-
phism from A ({an}∞n=1 , {bn}∞n=1) onto B ({an}∞n=1 , {bn}∞n=1).
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Proof. Let φ be in A ({an}∞n=1 , {bn}∞n=1). It is not hard to see that
the function

(2) Φ(s) = (Mφ) (s) =
∫ ∞

0

ts−1φ(t)dt

is holomorphic in {s ∈ C : a1 < Re s < b1}. Moreover the integral on the
right side of (2) is absolutely convergent in {s ∈ C : a1 < Re s < b1}.

By partial integration we can obtain

(3) Φ(s) =
−1

s− a1

∫ ∞

0

xs−a2−1

(
xa2−a1+1 d

dx

)
(xa1φ(x)) dx ,

a1 < Re s < b1 ,

and the last integral is absolutely convergent in a2 < Re s < b1. Hence
the function Φ is holomorphically extended to {s 6= a1 : a2 < Re s < b1}
by the function on the right hand side of (3). The extended function, that
will be denoted again by Φ, has in s = a1 at most a simple pole.

By repeating the argument we can extend Φ(s) to a meromorphic
function in the complex plane that has in s = an and s = bn, n ∈ N, at
most simple poles. Moreover we get

Φ(s) =
(−1)k+l

∏̀

i=1

(s− bi)
k∏

j=1

(s− aj)

·
∫ ∞

0

xs−b`+1−1
∏̀

i=1

(
xbi+1−bi+1 d

dx

)
·

·

xb1−ak+1

k∏

j=1

(
xaj+1−aj+1 d

dx

)
(xa1φ(x))


 dx ,

s ∈ {s ∈ C/ak+1 < Re s < b`+1} −
({an}k

n=1 ∪ {bn}`
n=1

)
, l, k ∈ N.

Hence, for every s ∈ V (k, `)
∣∣∣∣∣∣
∏̀

i=1

(s− bi)
k∏

j=1

(s− aj)Φ(s)

∣∣∣∣∣∣
≤

∫ 1

0

xRe s−ak+1−1dx γ1
`,k(φ)+

+
∫ ∞

1

xRe s−b`+1−1dx γ0
`,k(φ) =

1
Re s− ak+1

γ1
`,k(φ)+

+
1

b`+1 − Re s
γ0

`,k(φ) ≤ 1
ε

[
γ1

`,k(φ) + γ0
`,k(φ)

]
, l, k ∈ N.

Then
ω`,k (Φ) ≤ 1

ε

[
γ1

`,k(φ) + γ0
`,k(φ)

]
, l, k ∈ N.
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Thus we conclude that M is a continuous mapping from A({an}∞n=1,
{bn}∞n=1) into B ({an}∞n=1 , {bn}∞n=1).

Let now Φ be in B ({an}∞n=1 , {bn}∞n=1). We define the function

(T Φ) (x) = φ(x) =
1

2π i

∫ c+i∞

c−i∞
x−sΦ(s)ds , x ∈ I,

where c ∈ (a1 , b1). The Cauchy residues theorem allows to see that the
integral defining φ is not depending on c ∈ (a1 , b1).

By differentiating under the integral sign we obtain

xm(ak+1−b`+1)
∏̀

i=1

(
xbi+1−bi+1 d

dx

)


xb1−ak+1

k∏

j=1

(
xaj+1−aj+1 d

dx

)
(xa1φ(x))


 =

=
(−1)k+`

2π i

∫ c+i∞

c−i∞
xm(ak+1−b`+1)−s+b`+1

∏̀

i=1

(s− bi)
k∏

j=1

(s− aj)Φ(s)ds ,

x ∈ I, l, k ∈ N, m = 0, 1.

Note that the differentiation under the integral sign is justified because
Φ ∈ B ({an}∞n=1, {bn}∞n=1).

Assume now m = 0 and l, k ∈ N. If x ∈ (0, 1) then
∣∣∣∣∣∣
∏̀

i=1

(
xbi+1−bi+1 d

dx

) 
xb1−ak+1

k∏

j=1

(
xaj+1−aj+1 d

dx

)
(xa1φ(x))




∣∣∣∣∣∣
≤

≤ 1
2 π

∫ +∞

−∞

1
|(c + it− b`+1) (c + it− b`+2)|dt ω`+2,k (Φ)(4)

because c < b`+1.
On the other hand, for every x ∈ [1 , ∞) and R > 0 we have

(5)

1
2π i

∫

ΓR

∏̀

i=1

(s− bi)
k∏

j=1

(s− aj)x−s+b`+1Φ(s)ds =

= Re s


∏̀

i=1

(s− bi)
k∏

j=1

(s− aj) x−s+b`+1Φ(s) ; s = b`+1



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Figure 1

where ΓR is the closed path in Figure 1, and c1 is chosen in the real interval
(b`+1 , b`+2).

Moreover, denoting by LR,α the path having the parametrization
s(t) = t + iαR, t ∈ [c, c1] for α = 1,−1, one has

∣∣∣∣∣∣

∫

LR,α

∏̀

i=1

(s− bi)
k∏

j=1

(s− aj) x−s+b`+1Φ(s)ds

∣∣∣∣∣∣
≤

≤ 1
R2

∫ c1

c

x−t+b`+1dt ω`+2,k (Φ) → 0,

as R →∞, for α = 1,−1.

Hence, by taking R →∞ in (5) we conclude that

(6)

1
2π i

∫ c+i∞

c−i∞
x−s+b`+1

∏̀

i=1

(s− bi)
k∏

j=1

(s− aj)Φ(s)ds =

=
1

2π i

∫ c1+i∞

c1−i∞
x−s+b`+1

∏̀

i=1

(s− bi)
k∏

j=1

(s− aj)Φ(s)ds−

−Re s


∏̀

i=1

(s− bi)
k∏

j=1

(s− aj)x−s+b`+1Φ(s) ; s = b`+1


 .
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Also, since c1 > b`+1, we get

(7)

∣∣∣∣∣∣

∫ c1+i∞

c1−i∞
x−s+b`+1

∏̀

i=1

(s− bi)
k∏

j=1

(s− aj)Φ(s)ds

∣∣∣∣∣∣
≤

≤
∫ +∞

−∞

1
|(c1 + it− b`+1) (c1 + it− b`+2)|dt ω`+2,k (Φ) , x ∈ [1 , ∞).

Moreover,
(8) ∣∣∣∣∣∣

Re s


∏̀

i=1

(s− bi)
k∏

j=1

(s− aj)x−s+b`+1Φ(s) ; s = b`+1




∣∣∣∣∣∣
=

= lim
s→b`+1

∣∣∣∣∣∣

`+1∏

i=1

(s− bi)
k∏

j=1

(s− aj) x−s+b`+1Φ(s)

∣∣∣∣∣∣
≤ ω`+1,k (Φ) , x ∈ [1,∞).

By combining (4), (6), (7) and (8) we deduce that

(9) γ0
`,k(φ) ≤ M1 [ω`+2,k (Φ) + ω`+1,k (Φ)]

for a certain M1 > 0.
By proceeding in a similar way we can find a positive constant M2

such that

(10) γ1
`,k(φ) ≤ M2 [ω`+2,k (Φ) + ω`+1,k (Φ)] .

From (9) and (10) we infer that T is a continuous mapping from
B ({an}∞n=1, {bn}∞n=1) into A ({an}∞n=1, {bn}∞n=1).

To finish the proof it is sufficient to take into account that T ◦M(φ) =
φ, φ ∈ A ({an}∞n=1, {bn}∞n=1) and M◦T (Φ) =Φ, Φ∈B ({an}∞n=1 , {bn}∞n=1).
(I. N. Sneddon [17], p. 273 ). ¤

We now investigate a multiplier mapping between spaces of type
B ({an}∞n=1 , {bn}∞n=1) that will be useful in the sequel.

Proposition 2. Let {an,i}∞n=1 be a sequence of real numbers such
that inf {an,i − an+1,i : n ∈ N} > 0 and let {bn,i}∞n=1 be a sequence of
real numbers such that inf {bn+1,i − bn,i : n ∈ N} > 0, i = 1, 2. Assume
also that a1,i < b1,i , i = 1, 2.

If K(s) is a meromorphic function in the complex plane satisfying

(i) K(s) has simple zeros in s = 1−an,1 and s = 1−bn,1 , n ∈ N,
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(ii) K(s) has its singularities at most in s = an,2 and s =
bn,2 , n ∈ N; moreover such singularities are simple poles,
and

(iii) for every compact subset J of R there exist MJ > 0, YJ > 0
and αJ ∈ R such that

|K(s)| ≤ MJ |Im s|αJ , for | Im s| > YJ and Re s ∈ J ,

then the mapping TK (Φ) (s) = K(s)Φ(1−s) is a continuous linear mapping
from B ({an,1}∞n=1 , {bn,1}∞n=1) into B ({an,2}∞n=1 , {bn,2}∞n=1).

Proof. Let Φ be in B ({an,1}∞n=1 , {bn,1}∞n=1). It is clear that the
function K(s)Φ(1 − s) is a meromorphic function in C having at most
simple poles in s = an,2 and s = bn,2 , n ∈ N.

Let `, k ∈ N and choose a small enough ε > 0. We put V i
ε (k, `) =

{s ∈ C : ak+1,i + ε ≤ Re s ≤ b`+1,i − ε} , i = 1, 2. Two nonnegative inte-
ger numbers γ, β are choosen such that

ω2
ε (k, `) =

{
s ∈ C : 1− s ∈ V 2

ε (k, `)
} ⊂ V 1

ε (β, γ)

and ` + k + α < γ + β, where α is the positive constant αJ given in (iii)
with J = [ε + 1− b`+1,2 , ε + 1− ak+1,2].

Then by virtue of the conditions imposed on the function K there
exists a positive constant M for which

sup
s∈V 2

ε (k,`)

∣∣∣∣∣∣
∏̀

i=1

(s− bi,2)
k∏

j=1

(s− aj,2) TK (Φ) (s)

∣∣∣∣∣∣
≤

≤ sup
s∈ω2

ε (k,`)

∣∣∣∣∣∣∣∣∣∣∣

∏̀

i=1

(1− bi,2 − s)
k∏

j=1

(1− aj,2 − s)K(1− s)

γ∏

i=1

(s− bi,1)
β∏

j=1

(s− aj,1)

∣∣∣∣∣∣∣∣∣∣∣

.

· sup
s∈V 1

ε (β,γ)

∣∣∣∣∣∣

γ∏

i=1

(s− bi,1)
β∏

j=1

(s− aj,1) (Φ) (s)

∣∣∣∣∣∣
≤

≤ M sup
s∈V 1

ε (β,γ)

∣∣∣∣∣∣

γ∏

i=1

(s− bi,1)
β∏

j=1

(s− aj,1) (Φ) (s)

∣∣∣∣∣∣
.

Thus the proof of this Proposition is complete. ¤
An immediate consequence of Proposition 2 is the following
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Corollary 1. Let {an,i}∞n=1 and {bn,i}∞n=1 , i = 1, 2 , be as in Propo-
sition 2. If K(s) is a meromorphic function in the complex plane satisfying

(i) K(s) has simple zeros in s = 1−an,1 and s = 1−bn,1 , n ∈ N,
(ii) K(s) has its singularities in s = an,2 and s = bn,2 , n ∈ N;

moreover such singularities are simple poles, and
(iii) For every compact subset J of R there exist MJ > 0, YJ > 0,

αJ > 0 and βJ > 0 such that

1
MJ

|Im s|βJ ≤ |K(s)| ≤ MJ |Im s|αJ , for | Im s| > YJ and Re s ∈ J ,

then the mapping TK (Φ) (s) = K(s)Φ(1 − s) is a homeomorphism from
B ({an,1}∞n=1 , {bn,1}∞n=1) onto B ({an,2}∞n=1 , {bn,2}∞n=1).

3 The Watson integral transformation

In this section we investigate the Watson integral transformation (1)
on the spaces of type A ({an}∞n=1 , {bn}∞n=1) and their duals when the
Mellin transform K(s) = M{k}(s) of k satisfies suitable smoothness and
growth conditions. The main result of this paragraph is the following

Theorem 1. Let {an,i}∞n=1 and {bn,i}∞n=1 , i = 1, 2 , and K(s) be as in
Corollary 1. Assume also that a = max {1− b1,1 , a1,2} < min {1− a1,1 ,
b1,2} = b and that for every compact subset J of (a, b) there exist MJ >
0 , YJ > 0 and αJ < −1 such that

|K(s)| ≤ MJ |Im s|αJ , for | Im s| > YJ and Re s ∈ J .

Then the Watson transformation (1), where

(11) k(x) =
1

2π i

∫ c+i∞

c−i∞
x−sK(s)ds , x ∈ I,

with a < c < b , is a homeomorphism from A ({an,1}∞n=1, {bn,1}∞n=1) onto
A ({an,2}∞n=1, {bn,2}∞n=1).

Proof. Note firstly that the integral in (11) is not depending on c
provided that a < c < b.

Let φ ∈ A ({an}∞n=1 , {bn}∞n=1). We have

W (φ)(y) =
1

2 π i

∫ ∞

0

φ(x)
∫ c+i∞

c−i∞
(xy)−sK(s)ds dx , y ∈ I ,

where a < c < b.
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By virtue of the Fubini Theorem we can deduce

W (φ)(y) =
1

2 π i

∫ c+i∞

c−i∞
K(s)y−s

∫ ∞

0

φ(x)x−sdx ds , y ∈ I ,

because
∫∞
0
|φ(x)|x−cdx < ∞ when a < c < b.

Hence we can be write

(12) W (φ)(y) = M−1 ◦ TK ◦M(φ)(y) , y ∈ I,

where as usual M denotes the Mellin transformation and TK is the map-
ping studied in Section 2.

The desired result follows now from (12) as an immediate consequence
of Proposition 1 and Corollary 1. ¤

Next we establish a Parseval equality for the transformation W .

Proposition 3. Let {an,i}∞n=1 and {bn,i}∞n=1 , i = 1, 2 , and K(s) be
as in Proposition 2. Assume also that a = max {1− b1,1 , 1− b1,2} <
min {1− a1,1 , 1− a1,2} = b and that for every compact subset J of (a, b)
there exist MJ > 0 , YJ > 0 and αJ < −1 such that |K(s)| ≤ MJ |Im s|αJ ,
for | Im s| > YJ and Re s ∈ J . If W denotes the integral transforma-

tion (1), where k(x) =
1

2π i

∫ c+i∞

c−i∞
x−sK(s)ds with a < c < b, then

(13)
∫ ∞

0

φ1(x)W (φ2) (x)dx =
∫ ∞

0

W (φ1) (x)φ2(x)dx

for every φi ∈ A ({an,i}∞n=1 , {bn,i}∞n=1), i = 1, 2.

Proof. Let φi ∈ A ({an,i}∞n=1 , {bn,i}∞n=1) , i = 1, 2. Since k(x) =
1

2π i

∫ c+i∞

c−i∞
x−sK(s)ds where a < c < b, and this integral is not depending

on c provided that a < c < b, for every c, a < c < b there exists Mc > 0
for which

∫ ∞

0

∫ ∞

0

|φ1(x)φ2(y)k(xy)| dx dy ≤

≤ Mc

∫ ∞

0

x−c |φ1(x)| dx

∫ ∞

0

x−c |φ2(x)| dx.

Therefore
∫∞
0

∫∞
0
|φ1(x)φ2(y)k(xy)| dx dy < ∞ because∫∞

0
x−c |φi(x)| dx < ∞, i = 1, 2, provided that a < c < b.
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By invoking the Fubini Theorem we conclude that
∫ ∞

0

φ1(x)W (φ2) (x)dx =
∫ ∞

0

φ1(x)
∫ ∞

0

k(xy)φ2(y)dy dx =

=
∫ ∞

0

φ2(y)
∫ ∞

0

k(xy)φ1(x)dx dy =
∫ ∞

0

φ2(y)W (φ1) (y)dy. ¤

We define the generalized W-transformation onA({an}∞n=1, {bn}∞n=1)
′,

the dual space of A ({an}∞n=1, {bn}∞n=1), as the transpose of the classical
W transform. An immediate consequence of Theorem 1 is the following

Theorem 2. Let {an,i}∞n=1 and {bn,i}∞n=1 , i = 1, 2 , K and k be as in
Theorem 1. Then the generalized W transform W ′f of f ∈ A({an,2}∞n=1,
{bn,2}∞n=1)

′ given by

(14) 〈W ′f , φ〉 = 〈 f , Wφ〉 , φ ∈ A ({an,1}∞n=1 , {bn,1}∞n=1)

defines a homeomorphism fromA ({an,2}∞n=1,{bn,2}∞n=1)
′
ontoA({an,1}∞n=1,

{bn,1}∞n=1)
′ if A ({an,i}∞n=1 , {bn,i}∞n=1)

′
is endowed either with its weak ∗

or its strong topology.

Next we give sufficient conditions for A ({an,2}∞n=1 , {bn,2}∞n=1) to be
a subspace of A ({an,1}∞n=1 , {bn,1}∞n=1)

′.

Proposition 4. Let {an,i}∞n=1 and {bn,i}∞n=1 be as in Proposition 2.
Suppose also that a1,1 + a1,2 < 1 and b1,1 + b1,2 > 1. Then A({an,1}∞n=1,

{bn,1}∞n=1) ⊂ A ({an,2}∞n=1 , {bn,2}∞n=1)
′
in the following sense : every φ ∈

A({an,1}∞n=1, {bn,1}∞n=1) defines an element of A ({an,2}∞n=1, {bn,2}∞n=1)
′

through

〈φ , ψ〉 =
∫ ∞

0

φ(x)ψ(x)dx , ψ ∈ A ({an,2}∞n=1 , {bn,2}∞n=1) .

Proof. Let φ ∈ A ({an,1}∞n=1, {bn,1}∞n=1). For every ψ∈A({an,2}∞n=1,
{bn,2}∞n=1) we have

∣∣∣∣
∫ ∞

0

φ(x)ψ(x)dx

∣∣∣∣ ≤
∫ 1

0

x−a1,1−a1,2dx sup
t∈I

|ta1,1φ(t)| . sup
t∈I

|ta1,2ψ(t)|+

+
∫ ∞

1

x−b1,1−b1,2dx sup
t∈I

∣∣tb1,1φ(t)
∣∣ sup

t∈I

∣∣tb1,2ψ(t)
∣∣ .
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Hence there exists a positive constant M such that
∣∣∣∣
∫ ∞

0

φ(x)ψ(x)dx

∣∣∣∣ ≤ M

(
sup
t∈I

|ta1,2ψ(t)| + sup
t∈I

∣∣tb1,2ψ(t)
∣∣
)

,

for every ψ ∈ A ({an,2}∞n=1 , {bn,2}∞n=1) .

Therefore φ ∈ A ({an,2}∞n=1 , {bn,2}∞n=1)
′. ¤

According to Proposition 4 for every φ ∈ A ({an}∞n=1 , {bn}∞n=1) two
W transforms of φ can be defined: the classical transform (1) and the
generalized transform (14). We now prove that under suitable conditions
the classical W transform of φ ∈ A ({an,1}∞n=1 , {bn,1}∞n=1) given by (1)
is equal (in the sense of equality in A ({an,2}∞n=1 , {bn,2}∞n=1)

′ ) to the
generalized W transform of φ as given in (14).

Proposition 5. Assume that {an,i}∞n=1 and {bn,i}∞n=1 , i = 1, 2 , K
and k satisfy the conditions in Theorem 1 and Proposition 3. Suppose
also that a1,1 + a1,2 < 1 and b1,1 + b1,2 > 1. Then for every φ ∈
A ({an,1}∞n=1 , {bn,1}∞n=1)

〈Wφ , ψ〉 = 〈φ , Wψ〉 , ψ ∈ A ({an,1}∞n=1 , {bn,1}∞n=1) .

Proof. Let φ ∈ A ({an,1}∞n=1 , {bn,1}∞n=1). By virtue of Theorem
1, Wφ ∈ A ({an,2}∞n=1 , {bn,2}∞n=1). Hence by Proposition 4, Wφ ∈
A ({an,1}∞n=1 , {bn,1}∞n=1)

′ and

〈Wφ , ψ〉 =
∫ ∞

0

W (φ)(x)ψ(x)dx , ψ ∈ A ({an,1}∞n=1 , {bn,1}∞n=1) .

Moreover, according to (13)

〈Wφ, ψ〉=
∫ ∞

0

φ(x)W (ψ)(x)dx= 〈φ,Wψ〉 , ψ∈A ({an,1}∞n=1, {bn,1}∞n=1) ,

and the proof is finished. ¤

4 Other Watson type transformations

In the previous Section we have investigated Watson transforms whose
kernel k has a Mellin transform K(s) having a potential growth when
|Im s| is large. Motivated by the papers of A. Schuitman [15] and J.A.
Barrios and J.J. Betancor ([2] and [3]) we now extend our previous
results to Watson transformations whose kernel k is such that K(s) =
M(k)(s) admits an exponential growth when |Im s| is large. Since the
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proofs of the new results are essentially similar to those of the results in
Section 2 and 3 we shall omit the proofs here.

Let {an}∞n=1 be a sequence of real numbers such that inf{an − an+1:
n ∈ N} > 0 and let {bn}∞n=1 be a sequence of real numbers such that
inf{bn+1−bn: n ∈ N} > 0. Also assume that a1 < b1. For every θ ∈ (0 , π)
we define the set

Gθ = {x ∈ C : | arg x| ≤ θ}
where as usual arg x denotes the principal argument of x ∈ C. By G◦θ we
will denote the interior set of Gθ. Note that 0 does not belong to Gθ. The
space Aθ ({an}∞n=1 , {bn}∞n=1) consists of all those functions φ(x) , x ∈ Gθ,
which satisfy the following two conditions:
(i) φ is holomorphic in G◦θ and dm

dxm φ can be continuously extended to Gθ

for every m ∈ N, and
(ii) the quantity

γθ , m
` , k (φ) = sup

x∈Gθ

∣∣∣∣∣x
m(ak+1−b`+1)

∏̀

i=1

(
xbi+1−bi+1 d

dx

)
·

·

xb1−ak+1

k∏

j=1

(
xaj+1−aj+1 d

dx

)
(xa1φ(x))




∣∣∣∣∣∣
is finite for every `, k ∈ N and m = 0, 1.
Aθ ({an}∞n=1 , {bn}∞n=1) is endowed with the topology induced by the

family of seminorms
{

γθ , m
` , k

}
` , k∈N, m=0,1

. Thus Aθ ({an}∞n=1 , {bn}∞n=1)

is a Fréchet space.
Let ε > 0 such that b1−a1 > 2ε, an+1 +ε < an and bn +ε < bn+1, n ∈

N. Bθ
ε ({an}∞n=1 , {bn}∞n=1) is constituted by all meromorphic functions Φ

in the complex plane such that
(i) Φ has at most simple poles in s = an and s = bn, n ∈ N, and Φ(s) is

holomorphic in C− ({an}∞n=1 ∪ {bn}∞n=1),
(ii) for every `, k ∈ N,

(15) ωθ,ε
`,k (Φ) = sup

s∈Vε(k,`)

∣∣∣∣∣∣
∏̀

i=1

(s− bi)
k∏

j=1

(s− aj)Φ(s)eθ| Im s|

∣∣∣∣∣∣
< ∞

where Vε(k, `) is understood as in Section 2.

We consider in Bθ
ε ({an}∞n=1 , {bn}∞n=1) the topology generated by

the system of seminorms
{

ωθ,ε
`,k

}
`,k∈N

. Thus Bθ
ε ({an}∞n=1 , {bn}∞n=1) is a
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Fréchet space. As in Section 2, it can be seen that the space Bθ
ε ({an}∞n=1,

{bn}∞n=1) is not depending on ε provided that b1 − a1 > 2ε, an+1 +
ε < an and bn + ε < bn+1, n ∈ N. Hence in the sequel we write
Bθ ({an}∞n=1 , {bn}∞n=1) and ωθ

`,k instead of Bθ
ε ({an}∞n=1 , {bn}∞n=1) and

ωθ,ε
`,k. Moreover, if in (15) we replace eθ| Im s| by eθ |s| then the resulting

family of seminorms generates the same topology as
{

ωθ
`,k

}
`,k∈N

.

The results that we now list are analogous to those established in
Section 2.

Proposition 6. The Mellin integral transformation is a homeomor-
phism from Aθ ({an}∞n=1, {bn}∞n=1) onto Bθ ({an}∞n=1, {bn}∞n=1).

Proposition 7. Let {an,i}∞n=1 and {bn,i}∞n=1, i = 1, 2, be as in Propo-
sition 2. If K(s) is a meromorphic function in the complex plane satisfying

(i) K(s) has simple zeros in s = 1−an,1 and s = 1−bn,1 , n ∈ N,
(ii) K(s) is holomorphic in C−({an,2}∞n=1 ∪ {bn,2}∞n=1) and K(s)

has simple poles in s = an,2 and s = bn,2, n ∈ N,
(iii) There exists α, −θ < α < π− θ such that for every compact

subset J of R there exist MJ > 0, YJ > 0, αJ ∈ R and
βJ ∈ R for which

1
MJ

|Im s|βJ ≤ |K(s)| e|Im s|α ≤ MJ |Im s|αJ ,

for | Im s| > YJ and Re s ∈ J ,

then the mapping TK (Φ) (s) = K(s)Φ(1 − s) is a homeomorphism from
Bθ ({an,1}∞n=1, {bn,1}∞n=1) onto Bθ+α ({an,2}∞n=1, {bn,2}∞n=1).

The main result of this Section is the following

Theorem 3. Let {an,i}∞n=1, {bn,i}∞n=1 , i = 1, 2 , and K be as in
Proposition 7. Assume also that 0 < α < π − θ and a = max{1 − b1,1,

a1,2} < min {1− a1,1 , b1,2} = b. Define k(x) =
1

2π i

∫ c+i∞

c−i∞
x−sK(s)ds,

x ∈ G◦α, with a < c < b. Then the integral transformation W ∗ defined by

(16) W ∗ (φ) (x) =
1
x

∫ ∞ eiξ

0

k(u)φ
(u

x

)
du , x ∈ G◦θ+α

where |ξ| < α and |arg x− ξ| < θ, is a homeomorphism fromAθ({an,1}∞n=1,
{bn,1}∞n=1) onto Aθ+α ({an,2}∞n=1, {bn,2}∞n=1). Moreover W ∗ (φ) (x) =
W (φ) (x), x ∈ I.
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Proof. Let φ be in Aθ ({an,1}∞n=1 , {bn,1}∞n=1). Note firstly that the
integral in (16) is not depending on ξ provided that |ξ| < α, |arg x − ξ| <
θ and x ∈ G◦θ+α. In effect, denote by ΓR, R > 0, the path having the
parametric representation z = R ei ϕ, ξ1 < ϕ < ξ2, where |ξi| < α,
|arg x − ξi| < θ, i = 1, 2. Then, by taking into account that for every
a < c < b there exists Mc > 0 such that |k(x)| ≤ Mc|x|−c for x ∈ Gξ2 , we
have

∣∣∣∣
∫

ΓR

k(u)φ
(u

x

)
du

∣∣∣∣ ≤
∫ ξ2

ξ1

∣∣k (
R ei ϕ

)∣∣
∣∣∣∣φ

(
R ei ϕ

x

)∣∣∣∣ R dϕ ≤

≤ Mc

∫ ξ2

ξ1

R−c+1

∣∣∣∣φ
(

R ei ϕ

x

)∣∣∣∣ dϕ, c ∈ (a, b), R > 0.

Hence there exists Mc > 0 such that for every c ∈ (a, b)

∣∣∣∣
∫

ΓR

k(u)φ
(u

x

)
du

∣∣∣∣ ≤ Mc sup
t∈Gθ

|ta1φ(t)|R−c−a1,1+1 , R > 0

and ∣∣∣∣
∫

ΓR

k(u)φ
(u

x

)
du

∣∣∣∣ ≤ Mc sup
t∈Gθ

∣∣tb1φ(t)
∣∣ R−c−b1,1+1 , R > 0.

Therefore we conclude that∫

ΓR

k(u)φ
(u

x

)
du → 0, as R → 0 and R →∞ .

By using now the Cauchy theorem we deduce that
∫ ∞ eiξ1

0

k(u)φ
(u

x

)
du =

∫ ∞ eiξ2

0

k(u)φ
(u

x

)
du.

Thus if x ∈ I we can choose ξ = 0 and then we obtain

W ∗ (φ) (x) =
1
x

∫ ∞

0

k(u)φ
(u

x

)
du =

∫ ∞

0

k(ux)φ(u)du = W (φ) (x).

Also, according to the Fubini Theorem one has

(17)
∫ ∞ eiξ

0

k(u)φ
(u

x

)
du =

=
1

2πi

∫ c+i∞

c−i∞
K(s)

∫ ∞ eiξ

0

u−sφ
(u

x

)
du ds , x ∈ G◦θ+α.
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Moreover, by making a change of variables and by employing again
the Cauchy Theorem we obtain

(18)
∫ ∞ eiξ

0

u−sφ
(u

x

)
du =

= x1−s

∫ ∞ ei(ξ−arg x)

0

z−sφ(z)dz = x1−s

∫ ∞

0

z−sφ(z)dz , x ∈ G◦θ+α.

Hence by combining (17) and (18) we conclude that

W ∗ (φ) = M−1 ◦ TK ◦M (φ) .

Now the proof follows from Propositions 6 and 7. ¤
By employing the standard procedure the Watson transform W ∗ can

be defined in Aθ ({an}∞n=1 , {bn}∞n=1)
′ , the dual space of Aθ({an}∞n=1,

{bn}∞n=1).

5 An example and final remarks

The theory developed in the above paragraphs can be applied to study
a wide class of integral transformations having as kernel the H-function of
Ch. Fox [8].

Let m,n, p, q ∈ N, being 0≤m≤q, 0≤n≤p and p + q ≥ 1. Let αj > 0,
aj ∈ R (j = 1, . . . , p) and βj > 0, bj ∈ R (j = 1, . . . , q). We define the
function

Hm,n
p,q

(
(a1, α1), . . . , (ap, αp)
(b1, β1), . . . , (bq, βq)

∣∣∣∣∣s
)

=

m∏

j=1

Γ(bj + βjs)
n∏

j=1

Γ(1− aj − αjs)

q∏

j=m+1

Γ(1− bj − βjs)
p∏

j=n+1

Γ(aj + αjs)

and the real parameters

α =

{
max

{
− bj

βj
, j = 1, . . . , m

}
, for m > 0

−∞ , for m = 0

β =

{
min

{
1−aj

αj
, j = 1, . . . , n

}
, for n > 0

+∞ , for n = 0

δ =
n∑

j=1

αj −
p∑

j=n+1

αj +
m∑

j=1

βj −
q∑

j=m+1

βj
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µ =
q∑

j=1

βj −
p∑

j=1

αj , and ν =
q∑

j=1

bj −
p∑

j=1

aj .

Here
0∑
1

is understood as 0 when this sum appears.

If α < c < β for every δ > 0 and for δ = 0, being µ 6= 0 and
ν + µc− 1

2 (q − p) < −1 the Fox function is defined by

H
(

(a1, α1), . . . , (ap, αp)
(b1, β1), . . . , (bq, βq)

∣∣∣∣∣x
)

=

=
1

2 π i

∫ c+i∞

c−i∞
x−sHm,n

p,q

(
(a1, α1), . . . , (ap, αp)
(b1, β1), . . . , (bq, βq)

∣∣∣∣∣s
)

ds , x ∈ I.

By applying well-known properties of the Γ-function (A. Erdelyi [7])

we can see that the function Hm,n
p,q

(
(a1, α1), . . . , (ap, αp)
(b1, β1), . . . , (bq, βq)

∣∣∣∣∣s
)

satisfies the

requirements in Theorem 2 and the integral transformation

W (φ) (x) =
∫ ∞

0

Hm,n
p,q

(
(a1, α1), . . . , (ap, αp)
(b1, β1), . . . , (bq, βq)

∣∣∣∣∣xt

)
φ(t)dt

can be investigated in our spaces for a wide range of values of the param-
eters.

We finish this paper with two remarks.

I. The ideas developed in this paper can be modified to include Watson
transformations having other kind of associated functions K(s). Specifi-
cally, associated functions K(s) should be admitted when

(i) K(s) is meromorphic in the complex plane,
(ii) K(s) has real sequences of simple poles (its unique singularities) and

simple zeros such that each of them has as unique adherent point +∞
or −∞. Moreover, the distance between two consecutive terms of said
sequences is always greater than a positive number, and

(iii) K(s) satisfies the growth conditions in Theorems 1 or 2.

An example of this situation, the Krätzel integral transformation, is
investigated in [3]. Other important integral transforms can be seen as
special cases of this investigation: Wright transform [1], Struve transform
[13] and Hardy transform [5] amongst others.
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II. The procedure investigated here allows to study also integral trans-
forms defined by

(19) Y (φ) (x) =
∫ ∞

0

k
(x

t

)
φ(t)

dt

t
, x ∈ I.

By taking into account that under suitable conditions the formula

Y (φ) = M−1 ◦ TK ◦ L ◦M (φ)

holds, where L denotes the mapping defined by

L (Φ) (s) = Φ(1− s)

and K = M(k), it is easy to establish results analogous to those proved in
Theorems 1, 2 and 3 for the Y-transforms. Note that L defines a home-
omorphism from B ({an}∞n=1, {bn}∞n=1) onto B ({1− bn}∞n=1, {1− an}∞n=1).
Also, in this case it is possible to make the modifications commented in
(I). Important examples of transformations of type (19) are the fractional
integrals of Riemann-Liouville and Weyl [12].
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