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Fermat-Pell equation and
the numbers of the form w? + (w + 1)?

By P. G. TSANGARIS (Athens)

1. Introduction

In the present paper we obtain recursive formulae for the determi-
nation of all non-negative (that is X > 0 and Y > 0) integral solutions
of

(F) X2 —dY?*=C (d#0, C#0),

where d # O (non-square) is a natural number and C' is an integer # 0
(Theorem 2.3 for C' > 0 and Theorem 2.4 for C' < 0 below). Also, we
obtain same recursive formulae (Theorem 2.6 below).

The special case d = 2 and C = 2k?> — 1, k = 0,1,2,..., of (F)
constitute the connecting link with the numbers of the form

N(w) = w? + (w + 1)?

(for w = (X —1)/2, we have N(w) = Y? + k?).

In a fortcoming paper these recursive formulae will be used in the
special case d = 2 and C' = 2k? — 1 for the complete determination of all
composite numbers of the form w? + (w + 1)2.

The expression 1 +y1v/d will always denote the fundamental solution
of

(P) 2 —dy* =1 (d#£0).

Also, z, +ynVd n=0,1,..., will denote the sequece of all non-negative
integral solutions of (P). These solutions are given in [3, p. 439] by the
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following recursive formulae:

(1.1) Tpt1 = 201y — Tp—1, where zo=1 and z; =z,

(1.2)  Ynt1 =221y —Yn—1, where yp=0 and y; =y,

Let G be the group of all integral solutions of (P). Let Z = X + Y+/d be
an integral solution of (F'). Consider the class

A={Zz]z€G}
of solutions of (F) represented by Z. Define
A={-Zz|z€G}.

Then A constitutes a class of solutions of (F) represented by —Z. This
class A is called conjugate class of A. 1f A # A then A is called genuine or
not ambiguous class. If A = A, then A is called ambiguous [cf. 2, p. 205].

Let Z* = X* 4+ Y*Vd be the fundamental solution (as defined in
NAGELL in [2, p. 205]) of (F') belonging to the class A, then

A={Z*2|2€G} and A={-Z*2|z¢€G}.

Theorem 1.1. The Diophantine equation (F') has a finite number of
classes of solutions. The fundamental solutions of all such classes are
determined by the following (equivalent) inequalities in case C' > 0

(1.3) 0<[X*| < (a1 +1)C/2,
(1.4) 0<Y* < (y/ 2@ +1))VC

and by the following (equivalent) inequalities in case C' < 0

(15) 0< X" < /o — )(—=0)/2.
(L6) 0<Y" < (/2 - 1)V(=C).

Moreover, A consists of all elements of the form

X +YVd=(X"+Y*Vd)(z+yVd),

where x + y+/d ranges over the set of all integral solutions of (P).
The Diophantine equation (F') has no solution at all when it has

no solution satisfying the inequalities (1.3) and (1.4) or (1.5) and (1.6)
respectively.

PROOF. See Theorem 109, in [2] (cf. also [1], [4] and [5]).
In case C' > 0 the recursive description of all non-negative integral
solutions of (F') belonging to a class of solutions A, is given by Theorem 2.1.
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Its proof is based on Proposition 1.2. In the sequel A will always denote

an arbitrarily chosen fixious class of solutions of (F) and X* + Y*\/d its
fundamental solution.

Proposition 1.2. Consider the Diophantine equation (F), C > 0. Let
A be a class of solutions with X* > 0. Let

X, + Y, Vd= (X" +Y*Vd) (@, +yaVd) forall n=0,1,...,
X, +YVd= (X" —Y*Vd)(x, +y,Vd) forall n=1,2,....

Then the set of all non-negative integral solutions of (F') belonging to A
consists of all pairs (X, Y,), while the set of all non-negative (positive)
integral solutions of (F') belonging to A consists of all pairs (X, Y.).

PrRoOOF. By Theorem 1.1 the class A consists of all elements having
one of the following typical forms:

(X* 4+ Y*VAd) (2 + ynVd) = (@n X* + dynV*) + (yn X* + 2, Y *)Vd
=X, + Yn\/a,
(X* +Y"Vd)(~ay — yuVd) = =X, — Yo Vd,
(X* +Y"Vd) (~2p +yaVd) = — (2, X" — dy, V™) + (yu X* — 2,Y*)Vd
= X, + Y,V
(X* +Y*Vd)(z, — yoVd) = X, — Y Vd.
Also, A consists of all elements having one of the following typical forms:

(=X* +Y*Vd)(x, + ynVd) = =X/, — Y!Vd,

(—X* +Y*Vd)(—zn — yoVd) = X}, + YV,
(—X* + Y*Vd)(- xn+yn\/_) X, — YV,
(—X* +Y*Vd)(2y — yuVd) = =X, + Y, Vd.
The following hold true:
(1.7) Xp = 2, X* + dy,Y* >0,
(1.8) Yo =y X" 4+2,Y" >0,
(1.9) X =z, X" —dy,Y* > 0.

The last equality holds true because x, > y,Vd and X* > Y*V/d.
It will be proved that:

(1.10) Y, =y, X" —2,Y* >0 forevery n=1,2,....
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In fact, by (1.4) we deduce that
Y < (20)/(2(x1 + 1)) < y2C < 2(X* —dY*) for every n > 1,

that is
(Yn X*)? — (2, Y*)? > 0.

Hence
Yo X* —2,Y* >0, thatis Y >0.

From (1.7), (1.8), (1.9) and (1.10) follows the desired conclusion.

In the sequel X,,, X,,Y,,,Y, will have the same meaning as in Propo-
sition 1.2.

2. Study of the generalized Fermat equation

Theorem 2.1. Consider the Diophantine equation (F'), C > 0. Let A
be a class of solutions with X* > 0. Then the sequence of all non-negative
integral solutions of (F') belonging to A is determined by the following
recursive formulae:

(2.1) Xp41=221X,—Xn_1, where Xo=X" and X1 =21 X" +dy,: Y™,
(2.2) Yp41=221Y,—Y,_1, where Yo=Y" and V1= X" +x1Y".

Also, the sequence of all non-negative (positive) integral solutions of (F')
belonging to A is determined by the following recursive formulae:
(23) X, 1=2x1X) — X _,, where X(=X" and X| =2, X" —dy, Y™,
(24) Y, =2x1Y, Y, |, whereYy=—Y" and Y{ =y X* — 2, YV".
PROOF. It is easily seen, because of Proposition 1.2, that the non-
negative solutions of A and A satisfy the recursive formulae (2.1), (2.2)
and (2.3), (2.4) respectively. We now use Proposition 1.2 to prove the
reverse side of the theorem. It will be proved that

(2.5) X, + YoVd = (X* + Y*Vd)(zp + ynVd)
= (2o X"+ dy,Y™) + (yu X" + 2, Y*)Vd

foralln=0,1,....
Clearly (2.5) is true for n = 0,1. Suppose that (2.5) holds true for
every index less than n+ 1. (Induction hypothesis). It will be proved that
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(2.5) holds true for n + 1. In fact;
Xpi1 + Y1 Vd = 221X, — Xpo1 + (221Y,, — Yy_1)Vd
= (X* +Y*"Vd) (2n + ynVd) (221 — (21 — 11 Vd))
= (X" +Y"Vd)(zn11 + yn1Vd).

Evidently X,, > 0 and Y,, > 0. Hence, every pair (X,, Y,) is a non-
negative integral solution of (F') belonging to A.

In a similar way to the proof of (2.5) it can be proved that

X, +YNVd= (X* —Y*Vd)(x, +y,Vd) forall n=12....

Furthermore, by (1.9) and (1.10), we deduce that X/ > 0 and Y,, > 0 for
all n = 1,2,.... Hence, every pair (X, Y,) is a non-negative (positive)
integral solution of (F) belonging to A.

The set of all non-negative integral solutions of (F'), for C' > 0, is
determined in Theorem 2.3 whose proof is based (inter alia) on Proposi-
tion 2.2. A similar determination for C' < 0 is described in Theorem 2.4.

Proposition 2.2. Consider the Diophantine equation (F), C > 0. Let
A be a class of solutions with X* > 0. Then the following hold true:
(i) Y41 > Y, >0 forevery n=0,1,....

(ii) Let Y* > 0. Then Y, , >Y, >Y, >0 forevery n =1,2,....
(iii) Let Y* =0. ThenY,, =Y, for every n =0,1,....
(iv) Let A be genuine. Then

Yo, 1 >Y,>Y, >0 forall n=12,....
(v) Let A be ambiguous. Then for every m there exists n such that:

X, =X, and Y, =Y,.
PROOF. i)

Yoi1 = Yn1 X5+ Tp1 Y = (2190 + 20y1) X + (2120 +dy1yn) Y™
=y (1 X" +dy Y )+ 2 (n X  + 1Y) > yp X+ 2, Y =Y, >0,
thatis Y,41 >Y, >0 foreveryn=20,1,....
ii)
(2.6) Yy =yn(1 X" —dipnY") + 2, (1n X" — 21 Y™).
Also, —X* + Y*V/d is the fundamental solution of A, while,
ZIIlX* — dyly* + (le* - (Ely*)\/a - (—X* + Y*\/E)(—:Bl — ylx/a)
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is (by (1.9) and (1.10)) a positive integral solution of (F') belonging to A.
Hence, by Definition of fundamental solution, we obtain:

(2.7) X" —x1Y" >Y" (and equivalently x1X* —dy; Y™ > X¥).
From (2.6) and (2.7) we deduce:

Y’I;+1

iii) By the definition of Y,, and Y.
iv) It will be proved that

>Y,>Y!>0 forevery n=12....

(2.8) 1 X —dy Y > X" and yp X*— 2 Y >Y"
In fact; by (2.7) we have:
X —dp Y >X">0 and yp X*—z Y >Y* >0.

Assume that (2.8) is not true. Then

X" —dp Y =X and yp X* - Y =Y",
ie. (X* —Y*Vd)(z, +y1Vd) = X* +Y*Vd,
which condradicts the assumption, because A is genuine. Hence (2.8) holds
true. Thus by (2.6) we obtain:

Y, 1 >Y,>Y, >0
v) Evident by the assumption A = A.

Theorem 2.3. Consider the Diophantine equation (F'), C' > 0. Let
X! 4+ Y*Vd, where r = 1,2,... ,m, be the only integral solutions of (F)
such that:

0<X;<(e1+1)C/2 and 0<Y) <yVC/\/2(z1 +1).
Let
X+ YoVd = (X7 + Y Vd) (v +yuVd) forall n=0,1,...,
X, +YVd= (X Y V) (v +yaVd) forall n=1,2,....
(For a typical ).

Then the set of all non-negative integral solutions of (F') consists of all
pairs (X,,, Y,,) together with all pairs (X, Y,!) for all respective genuine
classes A, in addition to all pairs (X,, Y,) for all respective ambiguous
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classes B,.. Moreover, X,,, Y,,, X| andY,) are determined by the following
recursive formulae:

Xpt1 =2 X, — X,,-1 for n=1,2,... with

Xo=X, Xi =01 X +dy.Y,) and r=1,2,...,m.
Yoir1=2x01Y,—Y,1 for n=1,2,... with

Yo=Y ' Yi=uX +xY) and r=1,2,...,m.
X =2:X,—-X)_, for n=1,2,... with

Xo=Xr X =m X! —dypY,) and r=1,2,... ,m.
Yy, =2xY, Y, | for n=1,2,... with

YOI e —}/:‘(7 Yll = leT* —.fClYT* and T = 1,2,... ,m.

PrROOF. By using Proposition 2.2 and Theorems 1.1 and 2.1.

Theorem 2.4. Consider the Diophantine equation (F), C' < 0. Let
X’ 4+ Y \d, where r = 1,2,... ,m, be the only integral solutions of (F)
such that:

0< X< (x1—1)(~=C)/2 and 0<Y7 <y\/(=C)/\/2(x; —1).
Let
Xp+ Y Vd= (X +YVd)(2n +yaVd) forall n=0,1,...,

X7+ Y Vd = (=X + Y Vd) (w0 + yn V)
forall n=1,2,.... (For a typical r)

Then the set of all non-negative integral solutions of (F') consists of all
pairs (X,,, Y,,) together with all pairs (X!, Y,) for all respective genuine
classes A, in addition to all pairs (X,, Y,) for all respective ambiguous
classes B,.. Moreover, X,,, Y,,, X| andY, are determined by the following
recursive formulae:

Xpi1 =201 X, — X,,_1 for n=1,2,... with

Xo=X, Xi =1 X, +dyY,) and r=1,2,...,m.
Yoi1=2x1Y,—Y,—1 for n=1,2,... with

Yo=Y ' Yi=uX +xY and r=1,2,...,m.
X =2 X] - X, for n=1,2,... with

X\ =-X X! =-o X +dpnY) and r=1,2,... ,m.
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Y, =2xY, -Y, , for n=1,2,... with
Y=Y V/=-pnX+mY’ and r=1,2,... ,m.

PRrROOF. Similar to the proof of Theorem 2.3.

Our next Theorem 2.5 provides a recursive determination of all Y2
for the elements X + Y/d comprising the set of all absolutely distinct
solutions of a class of (F). [Any two solutions X + Yv/d and X' 4+ Y'\/d
of (F) are considered as absolutely the same whenever |X| = |X’| and
Y| = |Y’|]. A similar recursive determination of all Y2 + k2, for a fixed
integer k (and Y etc. as above) is provided by Theorem 2.6 whose proof is
a direct consequence of that of Theorem 2.5.

Theorem 2.5. Consider the Diophantine equation (F'). Let
X, +Y,Vd = (X* +Y*Vd)(x1 +y1Vd)",
X +Y/'Vd=(X*-Y*Vd)(z1 + y1Vd)" forall n=0,1,....

Let P, =Y2 and P, =Y for alln =0,1,.... Then the numbers P,, P!
are determined by the following recursive formulae:

(2.9) Poi1 =229P, — Py_1 +2y3C, where Py = v* and
Py = (01Y" 4+ 51 X7)?,
(2.10) P ., =2x3P, — P!_| +2y;C, where
P,=Y* and P| = (3 X* — 21Y*)2.
PROOF. First we prove that the numbers P,, P/ satisfy the above
mentioned recursive formulae. Let Z* = X*4+Y*Vd, 2, = (z1 +y1Vd)" =

2t =x, + ynVd, Z,, = Z*z, and Z! = Z*2,.
The following hold true:

72 =792 = 7% 2, and Z7 = X7 +dV* 42XV
Let X3 = X* +dY* and Y5 = 2X*Y*. Then
(X 4 Yo Vd)? = (X5 + Yo' Vd) (220 + y2n V).
Hence

(2.11) X2 +dY,? = X520, + dYs Yon.
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Also,

X2 -ay?=C.
Therefore

2dY,? = Xxo, + dYs ya, — C.

Let
(2.12) Qan = X522, + dY5 Yon.
But P, = Y2, then
(2.13) Qon = 2dP, + C.
Also,

Zm42 = ZmZz2  and  Zpy,_9 = Zm, 2.

Hence we deduce:

(2.14) Tmt2 = 202Tm — Tm—2  and  Ymyo = 2T2Ym — Ym—2.
From (2.12) and (2.14) we obtain:
(2.15) Q2nt2 = 22202, — Q2n—2.

By (2.13) we have:

222Q2n — Qo(n—1) = 2dPp11 + C,

that is
2:1?2(2dpn + C) - QdPn,1 —C= 2dPn+1 + C,

and so
Pn_|_1 = 21’2Pn - Pn—l + C(.IQ — 1)/d

Also x5 = 23 + dy?, that is (z2 — 1)/d = 2y?. Hence
Poi1 = 215P, — Py_1 +2Cy3.

In a similar way as above we deduce:
P ., =2x3P, — P!_, +2Cy3.

Also, the initial conditions Py = Y* etc are proved directly by the
definitions of P,, and P}, for n =0, 1.
Consider now the sequences P,, P) defined by (2.9) and (2.10). We

shall prove that P, = Y2 and P, = Y'2. Clearly
(2.16) P,=Y?

n
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is true for n = 0,1. Suppose that (2.16) holds true for every index less
than n + 1. (Induction hypothesis). It will be proved that (2.16) holds
true for n + 1. In fact;

Qy% = (IQ - 1)/d7

hence
2dP,+1 = 2x92dP,, — 2dP,—1 + 2(xz2 — 1)C.

Hence, by the induction hypothesis, we have
(2.17) 2dP 41 + C = 22o(X2 +dY,?) — (X2, +dY,2 ;).
The following holds true:
(2.18) Tont2 = 2T2T2n — T2p—2  and  Yoni2 = 2T2Y2n — Yon—2
From (2.11), (2.17) and (2.18) we obtain:
2dP,1+C = X2, +dY2, .

Thus we deduce:
Pny1 = YnQ+1'

In a similar way as above we deduce that:
P, :Y'i for every n =0,1,... .

Theorem 2.6. Consider the Diophantine equation (F). Let R, =

Y2+ k? and R, =Y + k2, where k is a fixed integer. Then the numbers
R,, R are determined by the following recursive formulae:

Rui1 =213R, — Ry_q — 2k* (22 — 1) + 2¢31C,
where Ry = Y** + k2 and Ry = (i X* +2,.Y*)? + k2

Rl =2xR), — Rl,_| —2k*(x2 — 1) + 245 C,
where R, = Y* 4 k2 and R, = (1 X* — 21Y*)2 + k2.

Proor. It is actually a direct consequence of the proof of Theo-
rem 2.5.
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3. An application of Theorem 2.6

A special case of Theorem 2.6 (d =2 and C =2k?*—1,k=0,1,2,...)
is the following

Theorem 3.1. The Diophantine equation
(F) X2 92?2 =2k> -1, where k=0,1,....

has at least one class of solutions A. Moreover, if R, = Y? + k* and

R, =Y’?2 + k2, then the numbers R,,, R, are determined by the following
recursive formulae:

(3.1) Rot1=34R, — R,_1 —8(2k* +1) forall n=1,2,...
with Ry = Y™ + k% and Ry = (2X* + 3Y*)2 4 k2.
(3.2) i1 =34R, — R, —8(2k* +1) forall n=12,...
with Rl = Y* 4+ k? and R, = (2X* — 3Y*)2 + k2,

PRrooOF. It suffices to prove the existence of the class A. The other
assertions are evident by Theorem 2.6, since 3 4+ 2v/2 is the fundamental
solution of x2 — 2y = 1.

The fundamental solution of (Fy) is 1 + /2. Also 2k — 1+ (k —1)v/2
is a solution of (Fj) for k =1,2,.... In fact it is the fundamental solution
of its class, since satisfies the inequalities (1.3) and (1.4). This proves the
Theorem.

Let X 4+ Y+/2 be a non-negative integral solution of (F},) (see The-
orem 2.3 for k > 1 or Theorem 2.4 for k = 0). Hence, we have X2 =
2(Y2 4+ k%) —1>1 and so X is an old natural number. In case X + Y2
is the fundamental solution of (Fp) or (Fy) we have X = 1. We set
Nw) = w?+ (w+ 1)?% If w = (X —1)/2 [w is an integer > 0 if
X + Y2 is not the fundamental solution of (Fy) or (F})] it follows that
N(w) = Y2+k2 Hence, by Theorem 3.1 the numbers R,,, R,,,n=1,2,...
[see (3.1) and (3.2)] are of the form w? + (w + 1)

Ezxample. We consider the Diophantine equation
(Fo) X2 -2yY? = 1.
From Theorems 2.4 and 3.1 we obtain: X* +Y*v/2 =1+ v/2 and

Ryt1=34R, —R,_1 —8=Y?,, n=12,... with
R0:1 and R1:25
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[It follows that Ry = 25, Ry = 841, Ry = 28561, Ry = 970225, Rs =
32959081, Rg = 1119638521, Ry = 38034750625, Rgs = 1292061882721,
Ry = 43892069261881, ... |

The numbers R,, = 1,2,..., are square (composite) numbers of the
form w? + (w + 1)2.

Remark. Let X* + Y*v/2 be the fundamental solution of a class A
of integral solutions of (F}), with X* > 0. If A is genuine, then (by
Proposition 2.2, (iv) and Theorem 3.1) R}, < R, < R}, for all n =
1,2,.... But if A is ambiguous, then for every m there exists n such that
R, =R,.
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