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CR-submanifolds of the paracomplex
projective space

By F. ETAYO (Santander) and M. FIORAVANTI (Santander)

Abstract. Some basic facts about CR-submanifolds of almost para-Hermitian
manifolds are stated. Examples of CR-submanifolds of paracomplex projective space
are given. It is proved that degenerate hypersurfaces are CR-submanifolds if and only
if they are invariant, that is, J̄(TxM)⊥ = (TxM)⊥.

1 Introduction

CR-submanifolds of almost Hermitian manifolds have been introduced
by Bejancu in the seventies (see [4] for a general treatment). The study
of invariants of real hypersurfaces of almost complex manifolds goes back
to the work of E. Cartan [6] in 1932, and it has been an active field
of research in the past two decades, with relations to complex analysis,
partial differential equations, and mathematical physics (see [7] and the
bibliography in [13]).

On the other hand, there is the theory of almost para-complex man-
ifolds (see the bibliography in [8]). While the J operator for an almost
complex manifold obeys J2 = −I, the coresponding operator for an al-
most para-complex manifold obeys J2 = I. This para-complex theory
bears many similarities with the complex theory and some differences.
In particular, almost para-Hermitian manifolds have necessarily a neutral
metric, i.e., a pseudo-Riemannian metric of signature (n, n). This adds an
extra difficulty to the theory of CR-submanifolds of almost para-Hermitian
manifolds. The theory is of local nature.

Some special cases of these submanifolds have been studied by Am-
ato, and Rosca [1, 2, 14, 15, 16]. However, no concrete examples have
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been given up to date. In this work, we provide some examples of CR-
submanifolds of the paracomplex projective space Pn(B). This 2n-dimen-
sional space Pn(B) has been introduced by Gadea and Montesinos as
the model of para-Kählerian manifold of constant para-holomorphic sec-
tional curvature [11].

In section 2 we present the generalities of the theory of CR-submani-
folds of an almost para-Hermitian manifold, showing its relation to the
theory of φ(4,−2)-manifolds [10, 17], and degenerate hypersurfaces [5]. In
section 3 we present some examples of CR-submanifolds of Pn(B), namely,
the sphere Sn (Proposition 4), the integral submanifolds of the eigenspaces
of eigenvalues ±1 of the almost product structure on Pn(B) (Proposi-
tion 5), the space Pk(B) with k < n (Proposition 6), and a CR-coisotropic
hypersurface of defect one (Proposition 7).

2 CR-submanifolds of an almost para-Hermitian manifold

Let (M, J̄, ḡ) be an almost para-Hermitian manifold, that is, M is a
real manifold of even dimension 2m, J̄ is a tensor field of type (1,1) veri-
fying J̄2 = I, J̄ 6= ±I, I being the identity, and ḡ is a pseudo-Riemannian
metric of signature (m, m) such that ḡ(J̄X̄, Ȳ ) + ḡ(X̄, J̄ Ȳ ) = 0, for all
vector fields X, Y on M .

Definition 1. A submanifold M of M is a CR-submanifold of M if the
following conditions are satisfied:

(a) The metric ḡ|M = g is of constant signature and rank.
(b) There exists two differentiable distributions D and D⊥ on M

satisfying:
(b.1) D is invariant, i.e, J̄Dx = Dx,∀x ∈ M ,

(b.2) D⊥ : x → D⊥
x ⊂ TxM is anti-invariant, i.e.,

J̄(D⊥
x ) ⊂ (TxM)⊥ ,

(b.3) TxM = Dx ⊕ D⊥
x , ∀x ∈ M, and Dx, D⊥

x are mutually
orthogonal.

Notation. Induced objects on M are denoted by suppressing the bar.
The number dim M − rank g will be called the defect of g.

Definition 2. Let M be a CR-submanifold of an almost para-Hermitian
manifold (M, J̄, ḡ), and let D,D⊥ be the corresponding distributions on M .

(a) M is an invariant CR-submanifold if D⊥ = {0}.
(b) M is an anti-invariant CR-submanifold if D = {0}.
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We prefer not to use the term proper in the case D 6= {0} 6= D⊥,
because the term proper is very often used for a submanifold of a pseudo-
Riemannian manifold with non degenerate induced metric.

Remarks. (1) dim (TxM)⊥ + dim TxM = dim TxM, ∀x ∈ M , but in
general, (TxM)⊥∩TxM = ∆xM may be different from zero. In fact, there
is a class of CR-submanifolds called co-isotropic, which verify (TxM)⊥ ⊂
TxM , ∀x ∈ M [15].
(2) Nothing is said in the definitions about the dimension of M .
(3) Condition (b.3) in definition 1 is not superfluous, since g might be
degenerate.

We shall develope the theory of CR-submanifolds in analogy with the
theory of CR-submanifolds of almost Hermitian manifolds given in [4]. As
we have the decomposition TxM = Dx⊕D⊥

x we can define the projections
Px : TxM −→ Dx and Qx : TxM −→ D⊥

x . Let φx, ωx be the following
maps

φx = J̄x ◦ Px , ωx = J̄x ◦Qx.

Lemma. With the above notations, φ2 = P.

Proof. Let X ∈ TxM . Then, φ2
x(X) = J̄xPxJ̄xPx(X)=J̄xJ̄xPx(X)=

Px(X), because J̄xPx(X) ∈ Dx and J̄2
x = I .

As a consequence of the lemma, φ is a tensor field of type (1,1) on M
verifying φ4 = φ2. A manifold M of even dimension, endowed with a tensor
field of type (1,1) satisfying φ4−φ2 = 0, rank φ = 1

2 (rank φ2 +dim M), is
called a φ(4,−2)-manifold [10, 17]. In our case, the condition on the rank
of φ is never satisfied, and the dimension of M may be odd. Nevertheless,
we can obtain some results on the integrability of the distributions D and
D⊥ , using some theorems on φ(4,−2)-manifolds.

Let ` = φ2 = P, ¯̀ = I − φ2 = I − P = Q. Then D = Im P =
Im `, D⊥ = Im Q = Im ¯̀. Using a result of [10] on the integrability of the
distributions Im `, Im ¯̀ we get

Proposition 1. Let Nφ be the Nijenhuis tensor of φ . With the above
assumptions:

(1) D is involutive iff QNφ(PX, PY ) = 0, ∀X, Y ∈ Γ(TM);
(2) D⊥ is involutive iff PNφ(QX, QY ) = 0, ∀X, Y ∈ Γ(TM).

Example 1. Let us assume that M is a proper pseudo-Riemannian
submanifold of M , i.e., that the immersion M → M is proper or, equiv-
alently, g ≡ ḡ|M is a non-degenerate metric. Then, the theory is close
to that of CR-submanifolds of an almost Hermitian manifold. For ex-
ample, if X ∈ Γ(TM), then J̄X = J̄PX + J̄QX = φX + ωX, where
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φX ∈ Γ(TM), ωX ∈ Γ(TM)⊥. In addition, TxM = TxM ⊕ (TxM)⊥,
and this decomposition allows to define φ (resp. ω) as the first (resp. the
second) projection. This is the starting point in [4]. Also, Gauss and
Weingarten equations (following the general theory of pseudo-Riemannian
submanifolds), and some examples, are shown in [3].

Example 2. Degenerate hypersurfaces of almost para-Hermitian man-
ifolds are studied in [5]. We would like to show their relations to the theory
of CR-submanifolds. A real hypersurface M of an almost para-Hermitian
manifold (M, J̄, ḡ) is called a degenerate hypersurface if

∆ : x −→ ∆x = (TxM)⊥ ∩ TxM

defines a non-trivial distribution on M . In this case, (TxM)⊥ has dimen-
sion one, (TxM)⊥ ⊂ TxM , and (TxM)⊥ is isotropic. Moreover g ≡ ḡ|M
verifies rank g = dim M−1. There are two classes of degenerate hypersur-
faces. Non-invariant degenerate hypersurfaces obey J̄(TxM)⊥∩(TxM)⊥ =
{0} and M is not invariant with respect to J̄ . Invariant degenerate hy-
persurfaces obey J̄(TxM)⊥ = (TxM)⊥ and M is invariant with respect
to J̄ .

We have the following:

Proposition 2. An invariant degenerate hypersurface M is a coiso-
tropic CR-submanifold of defect 1.

Proof. Let D⊥
x = (TxM)⊥, and Dx any complement of D⊥

x , that
is, TxM = Dx ⊕ D⊥

x . Since M is J̄-invariant one can choose Dx so
J̄(Dx) = Dx, taking into account that D⊥

x is isotropic, and contained
in an eigenspace of J̄ |M (because eigenspaces are maximally isotropic).

Observe that g|D⊥ = 0 , and g|D is a non-degenerate metric.
Necessary and sufficient conditions for the integrability of D are given

in Theorem 3 of [5], in terms of certain bilinear form associated to a par-
ticular distribution orthogonal to TM⊥ and containing J̄(TM⊥).

The proposition above fails for non-invariant degenerate hypersur-
faces. In fact, we have the following

Proposition 3. A non-invariant degenerate hypersurface M of defect
1 it is not a CR-submanifold.

Proof. Suppose M is a CR-submanifold with distribution D as in
definition 1. Let X ∈ (TxM)⊥, X 6= 0, and Y ∈ TxM. By condition (b.3)
in Definition 1

Y = Y1 + Y2 Y1 ∈ Dx , Y2 ∈ D⊥
x
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then

J̄Y = J̄Y1 + J̄Y2 , J̄Y1 ∈ Dx ⊂ TxM , J̄Y2 ∈ J̄(D⊥
x ) ⊂ (TxM)⊥ ⊂ TxM

Hence
0 = g(J̄X, Y ) + g(X, J̄Y ) = g(J̄X, Y )

whence J̄X ∈ (TxM)⊥. On the other hand, J̄X ∈ J̄(TxM)⊥. Thus

J̄(TxM)⊥ ∩ (TxM)⊥ 6= {0},
which contradicts the non-invariance of M .

Example 3. A certain class of codimension 2 CR-submanifolds are
studied in [15] and [2]. In this case, the metric g = ḡ|M is degenerate and
rank g = dim M − 2. In addition, the distributions D and D⊥ considered
by Rosca and Amato verify the following conditions: D⊥

x = (TxM)⊥ ⊂
TxM whence M is a coisotropic CR-submanifold; D⊥

x is a 2-dimensional
isotropic space, whence g|D⊥ = 0 and g|D is a non-degenerate metric. One
can check that these conditions are similar to those obtained in Example 2.

Example 4. In [16], the following theorem is proved: Any coisotropic
submanifold of a para-Kählerian manifold is a CR-submanifold. The proof
uses, as above, the distributions

D⊥
x = (TxM)⊥ ⊂ TxM,

which is isotropic, and D a complementary distribution of D⊥ in TM .
Then g|D⊥ = 0, and g|D is non-degenerate.

Example 5. Codimension m − 1 CR-submanifolds of para-Kählerian
manifolds having the Poisson property, are studied in [1]. Amato shows
that for such CR-submanifolds both D and D⊥ are integrable. Moreover
D⊥ is isotropic and totally geodesic.

3 CR-submanifolds of the paracomplex projective space

As mentioned in the introduction, the paracomplex projective space
Pn(B) was introduced by Gadea and Montesinos as the model of para-
Kählerian manifold of constant para-holomorphic sectional curvature [11].
Some geometric properties of this space form have been obtained in [12]
and [9]. We mention some of the basic facts of paracomplex projective
space, which will be used in the sequel:

(1) dim Pn(B) = 2n;

Pn(B) = {(u, v) ∈ Rn+1 × Rn+1 : 〈u, u〉 = 〈v, v〉, 〈u, v〉 = 1},
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where 〈 , 〉 denotes the standard inner product.
(2) Local charts (U+

α , ψα) and (U−
α , ψα) are defined on Pn(B), where

U+
α = {(u, v) ∈ Pn(B) : uα > 0, vα > 0},

U−
α = {(u, v) ∈ Pn(B) : uα < 0, vα < 0},

ψα(u, v) =
( u0

uα
, . . . ,

ûα

uα
, . . . ,

un

uα
;
v0

vα
, . . . ,

v̂α

vα
, . . . ,

vn

vα

}

with ̂ denoting a deleted element. The local coordinates are

(xi =
ui

uα
, yi =

vi

vα
).

(3) The para-Kählerian structure is given, in local coordinates, by

J =
∂

∂xi
⊗ dxi − ∂

∂yi
⊗ dyi

g =
∑

i,j

2
c(1 + 〈x, y〉)

[
dxi ⊗ dyi + dyi ⊗ dxi

− 1
1 + 〈x, y〉x

iyj(dyi ⊗ dxj + dxj ⊗ dyi)
]

so (Pn(B), J, g) is a para-Kählerian manifold of constant paraholomorphic
sectional curvature c.

(4) There exists a global diffeomorphism

ϕn : Pn(B) −→ TSn, (u, v) 7→
(

u + v

‖u + v‖ , u− v

)
.

Then we obtain the following results:

Proposition 4. There exists a canonical embedding in : Sn −→
Pn(B) which makes of Sn an anti-invariant CR-submanifold of Pn(B).
This embedding, composed with ϕn , gives the canonical embedding of Sn

into TSn, as the null section.

Proof. Let Sn = {u ∈ Rn+1,
n∑

i=0

(ui)2 = 1}, and define in(u) =

(u, u) ∈ Rn+1 × Rn+1. Obviously, in(u) ∈ Pn(B), and in : Sn −→ Pn(B)
is an embedding. One can check that ϕn ◦ in transforms Sn onto the
null section of TSn. From the definition of Sn, if u ∈ Sn, there exists
α ∈ {0, 1, . . . , n} such that uα 6= 0. Then, we work with the corresponding
chart (U±

α , ψα) and local coordinates (xi, yi). A simple calculation shows
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that in(Sn) is given by local equations {xi = yi}, and T(u,u)(in(Sn)) is
generated by {(

∂

∂xi

)

u

+
(

∂

∂yi

)

u

}
,

verifying

J

((
∂

∂xi

)

u

+
(

∂

∂yi

)

u

)
=

(
∂

∂xi

)

u

−
(

∂

∂yi

)

u

,

and g

((
∂

∂xi

)

u

+
(

∂

∂yi

)

u

,

(
∂

∂xj

)

u

−
(

∂

∂yj

)

u

)
= 0 ,

thus proving the result.

A direct consequence of the definition is the following:

Lemma. If (M, J) is an almost product structure, i.e., J is a tensor
field of type (1, 1) verifying J2 = I, and if S+ (resp. S−) denotes the
distribution corresponding to the eigenvalue 1 (resp. −1), then S+ and
S− are involutive if and only if NJ = 0, N being the Nijenhuis tensor of
J .

We apply this lemma to M = Pn(B). Since Pn(B) is a para-Kählerian
manifold, NJ = 0, and then we obtain

Proposition 5. Any integral manifold N of S+ or S− is an invariant
CR-submanifold of Pn(B).

Proof. If N is an integral manifold of S+ or S−, then J |N = ±I.
Taking Dp = TpN, D⊥

p = 0 for each p ∈ N , the result follows.

Note that the induced metric on N is null, and so it is degenerate.

Proposition 6. For all k < n, there exists an isometric embedding
jk,n : Pk(B) −→ Pn(B) as an invariant CR-submanifold.

Proof. Consider the injection Rk+1 −→ Rn+1 given by

u = (u0, . . . , uk) 7→ ū = (u0, . . . , uk, 0, . . . , 0),

and obtain the induced injection

jk,n : Pk(B) −→ Pn(B), (u, v) 7→ (ū, v̄).

This is an embedding. In the local charts (U±
α , ψα) and (Ū±

α , ψ̄α) on Pn(B),
jk,n is given by

(x1, . . . , xk; y1, . . . , yk) 7→ (x1, . . . , xk, 0, . . . , 0; y1, . . . , yk, 0, . . . , 0),
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and then jk,n(Pk(B)) = {xk+1 = · · · = xn = yk+1 = · · · = yn = 0}. Thus,
Pk(B) is J-invariant in Pn(B).

The examples of CR-submanifolds of Pn(B) given in Propositions 3,
4 and 5 are either invariant or anti-invariant. We shall show now a CR-
submanifold such that D 6= {0}, D⊥ 6= {0}. For the sake of simplicity, we
work with n = 2. Then, in a local chart (U±

α ; x1, x2, y1, y2) the metric g
has the following matrix expression:

g =
2
cλ




0 0 1− x1y1

λ −x2y1

λ

0 0 −x1y2

λ 1− x2y2

λ

1− x1y1

λ −x1y2

λ 0 0

−x2y1

λ 1− x2y2

λ 0 0




where λ = 1 + 〈x, y〉.
Proposition 7. The hypersurface S = {u2 = 0} ⊂ P2(B) is a coiso-

tropic CR-submanifold of defect one.

Remarks. (1) The hypersurface above is an invariant degenerate hy-
persurface in the sense of [5] (see also Proposition 2).

(2) Proposition 7 gives an example of the following theorem in [16]:
Any coisotropic submanifold of a para-Kählerian manifold is a CR-sub-
manifold with involutive vertical distribution D⊥, and the leaves of D⊥

are isotropic.

Proof of Proposition 7. First, observe that the hypersurface is lo-
cally defined by the equation {x2 = 0}, in the charts (U±

0 , ψ0) and (U±
1 , ψ1).

Let us fix a local chart (U±
α , ψα), α = 0, 1, with local coordinates

(x1, x2, y1, y2). The tangent space to S in each point is generated by{
∂

∂x1
,

∂

∂y1
,

∂

∂y2

}
. We shall determine the rank of g|S by computing the

metric coefficients with respect to this local basis:

g|S =
2

c(1 + 〈x, y〉)

(
0 A 0
A 0 0
0 0 0

)

where A = 1− x1y1

1 + 〈x, y〉 6= 0. Then, rank (g|S) = 2, and the line generated

by
∂

∂y2
is isotropic. Furthermore D⊥ =

〈
∂

∂y2

〉
is orthogonal to any
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transversal distribution D. We can choose D =
〈

∂

∂x1
,

∂

∂y1

〉
. This D

defines the CR-submanifold structure of S. Observe that

J(Dx) = Dx, J(D⊥
x ) = (TxS)⊥ = D⊥

x , ∀x ∈ S,

whence S is a coisotropic submanifold.

This proposition becomes generalized to higher dimensions in a
straightforward way.

Remark. With the notation of Proposition 6, the composition

β : S ↪→ P2(B)
ψ2−→TS2 → S2

is not surjective. In fact, the point (0, 0, 1) ∈ S2 has no pre-image. If
β(u0, u1, 0; v0, v1, v2) = (0, 0, 1) , then u0 + v0 = 0, u1 + v1 = 0, v2 6= 0,
which is impossible, because (u0)2 + (u1)2 = (v0)2 + (v1)2 + (v2)2.
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