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Nonflat pseudo-Riemannian space forms
and homogeneous

pseudo-Riemannian structures of class S1

By P. M. GADEA (Madrid) and J. MUÑOZ MASQUÉ (Madrid)

1. Introduction

The well-known characterization by Ambrose and Singer [1] of con-
nected, simply connected and complete homogeneous Riemannian man-
ifolds in terms of a (1,2) tensor field S on the manifold, which in turn
generalizes Cartan’s characterization of Riemannian symmetric spaces [3],
has been extended in [5] to the pseudo-Riemannian case of any signature.

This extended characterization allows us to obtain (§2) a classifica-
tion of homogeneous pseudo-Riemannian structures into eight classes in
the pseudo-Riemannian case, according as the structure S belongs to an
invariant subspace of certain space S1⊕S2⊕S3, thus generalizing the
Riemannian case studied in [7].

The main purpose of the present paper is to prove that if a connected,
simply connected and complete pseudo-Riemannian manifold (M, g) is a
nonflat pseudo-Riemannian space form, then (M, g) is locally isometric to
a manifold which admits a nondegenerate homogeneous structure of class
S1. The result follows by means of a Cayley transformation which we define
here in terms of paracomplex numbers (for these numbers see [4,6]). The
proof provides the pseudo-Riemannian models for any signature similar to
the Riemannian Poincaré models.

We also prove, by using Cartan’s moving frame method as in [8],
that if a connected pseudo-Riemannian manifold (M, g) of any signature
admits a nondegenerate homogeneous structure of class S1, then (M, g) is
a nonflat pseudo-Riemannian space form.
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2. Definitions and results

Let M be a connected C∞ manifold of dimension m + n endowed
with a pseudo-Riemannian metric g of signature (m,n). Let ∇ denote the
Levi-Civita connection of g and R the curvature tensor.

A homogeneous pseudo-Riemannian structure on (M, g) is [5] a tensor
field S of type (1,2) on M such that the connection ∇̃ = ∇− S satisfies

∇̃g = 0, ∇̃R = 0, ∇̃S = 0 .

The following result is proved in [5]: if (M, g) is connected, simply con-
nected and complete, then it admits a homogeneous pseudo-Riemannian
structure if and only if it is a reductive homogeneous pseudo-Riemannian
manifold. Notice that a homogeneous Riemannian manifold is always com-
plete and reductive.

Let V be a finite dimensional real vector space endowed with an inner
product 〈 , 〉 of signature (m,n), with the convention that (m,n) means
m pluses and n minuses. (V, 〈 , 〉) is the model for each tangent space
TxM, x ∈ M , of a reductive homogeneous pseudo-Riemannian mani-
fold of signature (m,n). Consider the vector space S(V ) of (0,3) ten-
sors on (V, 〈 , 〉) satisfying the same symmetries as a homogeneous pseudo-
Riemannian structure S, that is,

S(V ) = {S ∈ 3⊗V ∗ : SXY Z = −SXZY , X, Y, Z ∈ V } ,

where SXY Z = 〈SXY,Z〉. By using arguments similar to those in [7, §3]
we can determine the decomposition of S(V ) into subspaces which are
invariant and irreducible under the action of the pseudo-orthogonal group
O(m,n) given by

(aS)XY Z = Sa−1Xa−1Y a−1Z , a ∈ O(m,n) .

Specifically, being c12(S)(X) =
∑

i εiSeieiX , where {ei} is an or-
thonormal basis of V , 〈ei, ei〉 = εi, εi = 1 for 1 ≤ i ≤ m, εi = −1
for m + 1 ≤ i ≤ m + n, we have:

Theorem 2.1. If dim V ≥ 3, then S(V ) decomposes into the direct
sum of subspaces which are invariant and irreducible under the action of
O(m,n):

S(V ) = S1(V )⊕ S2(V )⊕ S3(V ) ,

where

S1(V ) = {S ∈ S(V ) : SXY Z = 〈X, Y 〉ω(Z)− 〈X, Z〉ω(Y ), ω ∈ V ∗} ,

S2(V ) = {S ∈ S(V ) : S
XY Z

SXY Z = 0, c12(S) = 0} ,

S3(V ) = {S ∈ S(V ) : SXY Z + SY XZ = 0} .
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If dim V = 2 then S(V ) = S1(V ).

Proof. The representation theory of O(m,n) is similar to that of
O(m + n) ([9], [2]), having only in mind that the trace maps are metric
contractions and thus depend on the specific group O(m,n).

Definition 2.1. A homogeneous pseudo-Riemannian structure S on
(M, g) is said to be of type S1, if, at each point of x ∈ M, S(x) ∈ S(TxM)
belongs to S1(TxM). Let S be a homogeneous structure of type S1

on a connected pseudo-Riemannian manifold (M, g), that is, SXY Z =
g(X,Y )ω(Z) − g(X, Z)ω(Y ), where ω is a 1-form on M and let ξ be the
dual vector field to ω, i.e. g(X, ξ) = ω(X). We say that S is nondegenerate
if g(ξ, ξ) 6= 0.

Proposition 2.1. Let (M, g) be a connected pseudo-Riemannian man-
ifold which admits a nondegenerate homogeneous structure of type S1 de-
fined by a vector field ξ. Then (M, g) is a nonflat pseudo-Riemannian
space form with constant curvature −g(ξ, ξ).

Proof. Let S be a nondegenerate structure of type S1 and ξ the cor-
responding vector field. Let {ei : i = 1, . . . ,m + n} be a local orthonormal
frame on (M, g), where g(ei, ej) = εjδij , εj = +1 if 1 ≤ j ≤ m, εj = −1 if
m+1 ≤ j ≤ m+n, and let {θi} be the dual basis of {ei}. If Ωi

j and Ω̃i
j are

the curvature forms of ∇ and ∇̃, respectively, where ∇ is the Levi-Civita
connection of g and ∇̃ = ∇−S, then, in a way similar to the one described
in [8], we obtain g(ξ, ξ)Ω̃i

j = 0, where g(ξ, ξ) is a nonzero constant, and
Ωi

j = Ω̃i
j + εjg(ξ, ξ)θi ∧ θj . Since g(ξ, ξ) 6= 0 then Ωi

j = εjg(ξ, ξ)θi ∧ θj and
so (M, g) has constant curvature −g(ξ, ξ).

Proposition 2.2. Let (M, g) be a connected, simply connected and
complete pseudo-Riemannian manifold of signature (m,n). If (M, g) is
a pseudo-Riemannian model of nonzero constant curvature then it is lo-
cally isometric to a manifold which admits a nondegenerate homogeneous
structure of type S1.

Proof. If (M, g) has constant curvature K 6= 0 then (M, g) is locally
isometric to the open subset

D =

{
(x1, . . . , xm+n) ∈ Rm+n : 1 +

K

4

m+n∑

i=1

εix
2
i > 0

}
,
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where εi = +1 if 1 ≤ i ≤ m, and εi = −1 if m + 1 ≤ i ≤ m + n, endowed
with the pseudo-Riemannian metric

gD =

m+n∑
i=1

εidx2
i

(
1 + K

4

m+n∑
i=1

εix2
i

)2

(see [10, p. 69]). We shall construct a generalized Cayley transformation

c : D → Hm+n = {x ∈ Rm+n : x1 > 0}
such that c is an isometry of (D, gD) onto the half-space Hm+n endowed
with the “Poincaré” metric

gHm+n = − 1
K

m∑
i=1

du2
i −

n∑
i=1

dv2
i

u2
1

,

where we have denoted by (ui, vi) the coordinates in Hm+n.
For this, we can suppose m < n, by reversing if necessary the sign of

the metric, and then embed Rm+n into R2n, and D into

DR2n = {x ∈ R2n : 1 +
K

4

2n∑

i=1

εix
2
i > 0} ,

where εi = +1 if 1 ≤ i ≤ n, and εi = −1 if n + 1 ≤ i ≤ 2n, endowed with
the metric

gDR2n =

2n∑
i=1

εidx2
i

(
1 + K

4

2n∑
i=1

εix2
i

)2 .

We can now consider paracomplex coordinates zk = ak + jbk on R2n (see
Libermann [6], Cruceanu et al. [4]), and identifying ak = xk for k = 1,
. . . , n; bk = xk for k = n + 1, . . . , 2n, we can express the above metric as

gDR2n =

n∑
k=1

dxk · dz̄k

(
1 + K

4

n∑
k=1

zkz̄k

)2 .

We recall that j2 = 1, the conjugate element z̄k of zk = ak + jbk is given
by z̄k = ak − jbk, and dzk · dz̄k = da2

k − db2
k.
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Let wk = uk + jvk denote the paracomplex coordinates in H2n ⊂ R2n

viewed as image of the Cayley transformation

c̃ : DR2n → H2n = {wk = uk + jvk

= (u1, . . . , un, v1, . . . , vn) ∈ R2n : u1 > 0} ,

which we define by

w1 = 2r

(z1 + 2r)(z̄1 − 2r) +
n∑

i=2

ziz̄i

(z1 − 2r)(z̄1 − 2r) +
n∑

i=2

ziz̄i

and

wk =
8r2zk

(z1 − 2r)(z̄1 − 2r) +
n∑

i=2

ziz̄i

, 2 ≤ k ≤ n ,

where K = −1/r2.
Consider on H2n the metric

gH2n = − 1
K

n∑
i=1

dwk · dw̄k

u2
1

.

Then, as a long but straightforward computation shows, the transforma-
tion

c̃ : (DR2n , gDR2n ) → (H2n, gH2n)

is an isometry. From which it is immediate that the Cayley transformation

c : (D, gD) → (Hm+n, gHm+n)

obtained by restricting c̃, is also an isometry.
Consequently, (M, g) is locally isometric to a pseudo-Riemannian

“Poincaré” half-space, and then Tricerri–Vanhecke’s argument ([7,
p. 55]) shows that ξ = −Ku1∂/∂u1 is the vector field associated to a non-
degenerate pseudo-Riemannian structure on Hm+n, denoted S, defined
by

SXY = g(X, Y )ξ − g(Y, ξ)X, X, Y ∈ X(Hm+n) ,

which holds g(ξ, ξ) = −K 6= 0.
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taires, Gordon and Breach, 1967.

[3] �E. Cartan, Sur une classe remarquable d’espaces de Riemann, Bull. Soc. Math.
France 54 (1926), 214–264.

[4] V. Cruceanu, P. Fortuny and P. M. Gadea, A survey on Paracomplex Geom-
etry, Rocky Mountain J. Math. (to appear).

[5] P. M. Gadea and J. A. Oubi~na, Homogeneous pseudo-Riemannian structures
and homogeneous almost para-Hermitian structures, Houston J. Math. 18 (1992),
449–465.

[6] P. Libermann, Sur le problème d’équivalence de certaines structures infinitésimales,
Ann. Mat. Pura Appl. 36 (1954), 27–120.

[7] F. Tricerri and L. Vanhecke, Homogeneous structures on Riemannian manifolds,
London Math. Soc. Lect. Notes, vol. 83, Cambridge Univ. Press, 1983.

[8] F. Tricerri and L. Vanhecke, Two results about homogeneous structures, Boll.
Un. Mat. Ital. (7) 2-A (1988), 261–267.

[9] H. Weyl, The classical groups, Princeton Univ. Press, 1939.
[10] J. A. Wolf, Spaces of constant curvature, Publish or Perish, 1977.

P. M. GADEA
IMAFF, CSIC
SERRANO 123, 28006–MADRID
SPAIN
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