Rational points on cubic surfaces*.
By L. ]J. MORDELL in Cambridge (England).

Let a cubic surface be defined by the equation

f(x,5,2)=0,
where f is an irreducible polynomial with rational coefficients, or by

g(x!y’zl W)=0
in homogeneous coordinates, where g is an irreducible homogeneous cubic
polynomial with rational coefficients. There is no loss in generality in sup-
posing that all the coefficients are integers.

The question of the rational points on the cubic surface, i. e. the solution
of the equation f(x,y,z)=0 in rational numbers, or of g(x,y,2, w)=0 in
integers, had been dormant for many years, but recently important results
have been found which have added greatly to our knowledge of the subject.

Special cases arise when the equation depends essentially upon two
variables, e. g. when the surface is a cone or a cylinder. The problem then
becomes that of finding the rational points on a cubic curve, say f(x,y)=0,
where f has rational coefficients, a problem in which mathematicians have
been interested for many centuries. Two types of cubic curves exist. In one
the curve has a double point, O, whose coordinates are easily seen to be
rational. Any line through O with rational slope, say #, will meet the cubic
in only one other point, say P. Its coordinates will be determined by an
equation of the first degree and so will be rational functions of a rational
parameter f. Conversely every rational point on the cubic is so expressible.

When the curve has no double point, no method is known of finding
a rational point on the general curve despite the efforts of mathematicians
for many, many, years. But if a tangent is drawn to the curve at a known
rational point, say P,, it will in general meet the curve at another point P,
whose coordinates are rational since they are determined by an equation of
the first degree. So the tangent at P, will lead to another point P, ,, and
we may in general find an infinity of rational points in this way. So if we
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know another rational point say P,, the chord or line joining P,, P, will
meet the curve in another rational point, say P,,, in general different from
P, and P,. Hence if we know any set P, P,,..., P, of rational points, we
may in general expect to find an infinity of rational points by carrying out
the tangent and chord process, adding the points thus found to the set and
continuing the process. About 25 years ago, | proved that all the rational
points on the curve couid be found from a finite number by the chord and
tangent process, and so a finite basis existed from which all rational solu-
tions can be found. We cannot, however, at present find the basis for the
general curve, though this can be done for special cases. We suppose then
hereafter, that the surface is not a cone or cylinder.

Several resuits for the rational points on cubic surfaces have been
known for two centuries. Thus the trivial case when the surface has a rational
double point, typified by .

== ax’+bx’y+cxy*+dy’,
has all its rational solutions given in terms of two rational parameters p, q
on putting x=pz, y=qaz.

Then about 1756, EULER solved parametrically x*+)* =24+ w* or say
in non-homogeneous coordinates x*--)°*+2°=1. The solution is obvious
from geometric considerations. The two straight lines A, x==0, y402=0
and B, x==¢% y+¢°2=0, where ¢ is a complex cube root of unity, lie
entirely on the surface. If we take any points Q, R conjugate in the field
K(o) on A, B respectively, the line QR meets the surface in another point P
which is rational since it is determined by an equation of the first degree.
The solution involves two parameters since Q and R depend upon two
rational parameters. Conversely since a line can be drawn through P to meet
the lines A, B, all the solutions are given in this way. The solution is
given by

y+ez y-+o'z
ﬁ=ﬂ+b{?, '-,;—“5' a+be’,
and so ;
y+z _ I
x—1~ " (a+bo)(a+bg’)’

where a, b are rational parameters.

Next there is an idea of KrRAFT, LAGRANGE and EULER about 1770 for
solving equations by using irrational numbers. Thus a two parameter solution
of y»—ax*=2° is given by taking

y+xla=(p+qla), z=p—ag’,
where p, ¢ are any rational numbers. But all the solutions are not in general
given in this way.
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More important is the use of cubic irrationalities.
Let &, ¢, 1y be roots of a cubic equation with rational coefficients. Then
LAGRANGE solved the homogeneous equation
Il (x+9y+82)=w

G
by writing
x+3dy+Pz= (p+q3+rd),

w=,II (p+43+r)

where p, g, r are rational parameters. Again, this is not the general solution.

Suppose now that a rational point P is known on the surface f(x, y, 2)=0.
The tangent plane at P meets the surface in general in an irreducible plane
cubic curve with a double point at P, and so we can find at once an infinity
of rational points depending on a rational parameter. This result was given
essentially by LiBri in 1820, but was probably known before that time. It
was shown by B. SEGRE about 10 years ago that the exceptional case when
the curve of intersection of the tangent plane broke up into three straight
lines was of particular interest and of great importance in the further de-
velopment.

The solution of the equations given so far have been more or less
obvious. In 1826, however, RYLEY found a parametric solution of the equation
X4-y'+42=n
which is certainly not obvious, by an ingenious method whose significance
seemed very obscure until fairly recently. This was until recently, practically
the last essentially new result found on the rational points of cubic surfaces
for more than a century. In 1930, RiCHMOND found another solution of RYLEY’s
equation by seeking those in which x, y, z were proportional to cubic poly-
nomials in a parameter {. The success of RiCHMOND’s method depended on
the existence of three rational solutions of x4 )°4-2°=0, namely the in-

flexions (1, —1,0) etc. '
But it was only ten years ago, that I solved a new equation, the first
one since RYLEY’s time. This was

(x+y+2)—dxyz=nm, d+0,
which includes RyLey's X’+V34+-Z%—=n as a special case as is seen by
putting

x=Y+2Z y=2+X, Z=X+Y, d=24, m=28n.
| found a particular solution on taking m==dyz*. Then
(x+y+zy=dyz(x+2),

which in homogeneous coordinates is a cubic curve with a double point at
(—1,0,1). The curve meets the general line x-+2=py through the double
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point where
(p+ 1)y =pdyz,

or

: TR

z= +
and so

= dp’ 1

. ALY g
Also from dyz*=m,

m__ dp

2 ED

On putting p=dm¢* where f is a new rational parameter, clearly x, y,z are
rationally expressible in termes of ¢

It was this solution which was the first of these new results. Next,
SEGRE found a parametric solution of the equation

x3+y5+azs=b,

where a, b are given rational numbers, which had previously seemed intrac-
table. For he showed that RICHMOND’s method applied to
xy(x+y)+az’=b,

since xy(x-y)+az*=0 has three rational solutions given by 2z=0,
xy(x+y)=0. He then made use¢ of the .well known transformation of
xy(x-+y) into X459

SEGRE made then a systematic study of the arithmetical properties of
cubic surfaces. Starting from LiBRI’s result, he investigated the special cases
when the tangent plane at a known point P met the cubic surface in a
reducible curve. He showed that every cubic surface contained either 0,1,3
or an infinity of rational points,

Cubic surfaces with no rational points have been known for a long
time, indeed not only surfaces but also eight dimensional cubic manifolds
as shown by HasSeE and also by myself. Thus SEGRE noted

X 42y ="T(2*4+2w%)
which has no solution apart from x=y=z=w=0. We may suppose
(x,»,2, w)=1. Then since to mod 7,
P=0 11, y“_ZTO, +1, x*42)*=0,

clearly

x=0, y=0.
Then

24-2w=0,
and so

z2=0, w=0.

Hence x,y,z, w are all divisible by 7, contrary to hy;;othesis.
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He showed next that if cubic surfaces with only three rational points
existed, they could be reduced to a canonical form, essentially

22— (14 fx)*=ax*+ bxy+cxy*+dy?,
the three rational points being (0,0,+1) and the point at infinity where
their join meets the surface. By considering the intersections of this surface
with a suitable cubic surface and a quadric surface, he was able to assign
17 points of intersection a priori, and so determined the eighteenth point
rationally as a rational function of three parameters.

| then showed that a parameter solution of the equation could be found
by elementary algebra, which also applied to

22— k(1 +fx)'=ax’+bx’y+cxy* +dy’,

by extending the method of LAGRANGE and using both quadratic and cubic
irrationalities. Thus, if 3, ¢, ¢ are the roots of

at + b8+ cE+d =0,
[ put
2k (1+19 k= gl}' [(P+g9+r9+Vk+vI+wd)]

where p, q,r, u, v, w are new unknowns. On writing down the condition that
(p+qd+rP)?—k(u+vd+4+wd)? could be written in the form X—VY3J,
it was possible to find special solutions for p, q,r, u, v, w.

SEGRE’s result meant that every cubic surface had only O or 1 or an
infinity of rational points. He showed that if there was only one rational
point, the surface could be reduced to the canonical form

22=f(x1 y)t
where f is a cubic polynomial in x, y with rational coefficients.
It is easily proved that every cubic with only a finite number of rational

points can be reduced to this form. The existence of any solution Xx,, ¥,, 2,, W,
of the equation g(X, Y, Z, W)=0 leads by a substitution

X=x24+x, Y=p24y, Z=202, W=wz+w
to an equation of the form
2L+ 2L+ Ly=0,

where L,, L,, L, are homogeneous polynomials of the first, second and third
degrees in x,y, w. Here L,, L, are not both identically zero as then the surface
would be a cone or cylinder. We may suppose L, is not identically zero,
since there would then be an infinity of values of z given by taking arbitrary
values of x, y, w for which L,#0. By an appropriate linear substitution we
may write L,=w. We will have now an infinity of rational solutions on
taking w==0 provided this does not imply L,=0, i.e. that L, is divisible
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by w. But on putting z—L,/2w for z, the equation takes the form
2
P Vel X
)= %)
as required.

SEGRE was able to apply my method to the equation 2*=f(x, y) and
to find a parametric solution. He thus showed that every cubic surface had
only none or an infinity of rational points.

Another solution of 22 = f(x, y) was found shortly after by R. F. WHITEHEAD
and is so elementary that it is most suprising that it remained unknown for

two centuries, and that so great a master of algebraic manipulation as EULER
should have missed it.

Let us write the equation as

Z=ax’*4+bx’y+cxy*+dy+ex+fxy+4 gy +hx+iy+j
We may suppose without loss of generality that a--0, and then that a=1
on writing x/a for x and 2/a for z.

We put x=)"+4ty, where f is a rational parameter. Then

2=)'+Ay'+By'+Cy*+Dy*+Ey+F,
say. We now put
z2=y'+Py'+Qy+R

giving a quadratic equation for y whose coefficients are rational functions
of t if we select P, Q, R as appropriate rational functions of ¢, e. g.

2P=A, 2Q+P*-=B etc.
Solving we have  y=g,+2)4,  where 8, 8, 4 are rational functions
of t with rational coefficicnts. On substituting we find  x=e,+ a4,

z==y,+7)4, where the « and y are also rational functions of t.
, Now the straight line

X—ea, _y=—p, = N B —

L] P 72
meets the cubic surface in three points. Two are determined by r*—4=0,
and so the third point is determined by a linear equation in r and is a
rational function of the rational parameter £.

At present, necessary and sufficient conditions for the existence of one
rational solution and so of an infinity are not known. I might conclude by
suggesting the

Conjecture: The equation f(x, y,z,w)=0 where f is a homogeneous
cubic polynomial with integer coefficients has rational solutions other than
x=y=2z=w=0 if and only if the congruence  f(x,y,z, w)=0 (mod m)
has solutions for all integers m in which x,y,z, w are not all divisible by m.
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