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On the coefficients of schlicht functions.

By ALFRED RENYI! in Budapest.

Let f(z)=2z+a,2*+...+a,2"+... denote a function which is analytic
and schlicht in the unit circle. There are still many unsolved questions, regarding
the estimation of the coefficients of such functions, of which the best known
is the conjecture of BIEBERBACH: |a,| =n. This has been proved in general
only for n=2 (KoeBE) and n=3 (LOWNER), but for every n it is proved
only under some additional conditions, among which we mention a theorem
of R. NEVANLINNA: |a,|=n for n=2, 3, 4, ... if the unit circle is mapped
by w=/(2) on a domain in the w-plane which is star-shaped with respect
to the origin. It follows from this theorem that in case the unit circle is
mapped by w==f(2) on a convex domain, we have |a,|= 1; as a matter of
fact it is easy to see that in this case the unit circle is mapped by the
function w,==2z/"(2) on a star-shaped domain, and thus |na,| <n and there-
fore |a,| =1 for n=2,3,... The theorem of NEVANLINNA has been gene-
ralized by N. G. DE BRUIN [3] as follows: the conjecture of Bieberbach is
valid if w=/(2) maps the unit circle on a domain G which has the pro-
perty that there exists a point A in the w-plane such that every straight line
through A and cutting G has only one segment in common with G. The
theorem of de Bruijn includes the case also when A is a point at infinity,
when his condition means that there exists a direction L such that every
straight line parallel to L and cutting G has only one segment in common
with G.Y) -

The object of the present paper is to prove a new theorem on the
coefficients of schlicht functions showing the dependence of the estimation
of the coefficients on certain geometrical data of the domain on which the

unit circle is mapped by the schlicht function in question. We prove first
the following

Theorem 1. Let f(2) =z+4a,2*+...4+a,2*+... be analytic and
schlicht in the unit circle. Let us put z=re'¥ and

1) This special case which will be applied below, was proved earlier by M. S.
RoperTSsON [8].
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M 1+ i+ it ).
If we suppose
2n
@ v =] lutr, pldg <
for 0=r<1, it follows
a-2m
3) la|<n = for n=2,3,...

Before proving Theorem I, let us discuss the geometrical meaning of
the condition (2). Let us suppose, that we have chosen for « the least possible
value, i. e. that « is the least upper bound of U(r) for 0 =r < 1. It has been
proved by V. PAATERO [5] that « is equal to the “boundary-rotation” (Rand-
drehung) of the domain on which the unit circle is mapped by the function
w==f(z). The boundary-rotation of a simply connected domain G can be
defined, following PAATERO as follows: If the boundary of G has a conti-
nuous tangent in every of its points, the boundary-rotation of G is defined
as the total variation, for a full turn, of the angle of direction of the tangent
to G. In the general case let us consider a sequence G, of closed domains,
G, being contained in G,., and each @, contained in G, further let us
suppose that G is exhausted by the sequence G,, i.e. that if G’ is any
closed subdomain of G, G''is contained in G, for n sufficiently large. Let
us defilie «, as the lower bound of the boundary-rotations (as defined above)
of all closed JORDAN curves with a continuous tangent which lie in G and
contain G, in their interior. Evidently the sequence «, is non-desreasing.
The finite or infinite limit of the sequence «, shall be called the boundary-
rotation of G. It has been proved by PAATERO that the function U(r) defined
by (2), which, according to a general theorem of F. RiEszZ on subharmonic
functions [6] is an increasing function of r, tends to the boundary-rotation
of the domain G (on which the unit circle is mapped by w=f(z)) for r- 1.
Thus our theorem can be announced also in the following equivalent form:

Theorem II. If the function f(z) = z+a,2*+-...+a,2"+... which i§
analytic and schlicht in the unit circle, maps the unit circle on a domain G,
having the boundary rotation «, we have

a-27

la,|<n = n=23,...

Naturally our result is interesting only for «=3s. In the special case
@ ==27, we obtain the well known estimation [a,|<1. As a matter of fact
the condition =2z is equivalent to the domain G being convex (see
PAATERO 1. ¢.). For « =3n we obtain from Theorem II. exactly the BIEBER-
BACH estimation |a,|<n, but we shall prove that a more precise estimation
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of the coefficients can be given, which gives for «=3= |a,| = F-:;—l This

follows from

Theorem lll. Under the conditions of Theorem II. we have

*) 0= 171

2”) n=223...

"

It is evident, using the inequalities Z{i <logn and 1-4x < e* that

= i
= a—2n) (e—2m & 1) 222
® H(+52)< (523 3)<o
Thus Theorem II follows from Theorem IIl. Let us prove now Theorem III.

We start from the following theorem of A. OSTROWSKI [4]:
If g(2)==u(r, @)+ iv(r, ) is analytic in the unit circle, (z=re'¥) and

if LJ lu(r, p)fdp =« for 0=r <1, there exists a function ¥ (¢) of bounded

variation, for which we have

2n
(6) g(Z)—z—,sz,_H dy(p)+i.v(0).
Further we have
gn 2‘.1
(7) Jl dy(p)=27 and J dy(g)| = .

This theorem is a generalization of a theorem of F. RIESZ, [7] who proved
it for the special case u(r, 9) =0, in which case y(p) is a monotonic func-

tion. Applying this theorem of OSTROWSKI to the function g(2) =1 +zf (2)

we obtain r'@
2n
z2f"(2) evr4-z
®) '+ e @ ZnJe'? aw(9)
0
and thus .
©) ra=L8 | 2ve)
further we have .
2n ?J‘l
(10) d[ ayp =2 [Idv(p)<e

Let us differentiate both sides of (9) n—2 times, n =2, we obtain that
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2n
. X n-2 p(k+1)
an f(")(z)=(" nz)!kg f( (Z)J = dy ()

Y z)il—k-l

Substituting in (11) 2=0 we obtain, using (10) that
2)' n-2 |f(k+l)(0)|

(12) 7)< i =y
or
i n-2
= Z‘(k+ l)akﬂ]
(13) |na,| < —=>

n—1

Now if we find a sequence ¢, of positive numbers satisfying the recursion
formula

n-2
Cisa
e
(14) SR .

we have by induction |na,|<c¢, for n=2,3,..., as we have a,=¢,. The
sequence ¢, in question can be found as follows: Let us put

n-2
o e Craa
= > ’1":3. k; n-1 M
(15) y k% c,x e
We have
n-2
“ ) - e i y
(16) y=t 33 au)er=z L.
Solving the differential equation )’ -—-E-—%— we obtain
1
(17) y= 5
Ll—x)*
Thus we have
L
Liet o
(18) e )(—U“’*n H‘l+ “].
As it has been indicated above, it follows
— Cn ey E ; at‘:‘2ﬂ'
(19) la|= =11 (1+ o= )

which proves Theorem III.

As remarked before, the estimation given by Theorem IIl is of no
interest for « > 3m. Using the theorem of ROBERTSON [8] mentioned in § I,
we prove the following theorem for this case:
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Theorem IV. Under the conditions of Theorem II we have
la,| = n, L G R
for a<4n.

The possibility of proving a theorem of this type has been suggested
to me by N. G. pE BRUIJN, to whom I am thankful also for some valuable
remarks concerning the proof.

Theorem IV is a consequence of the following simple geometrical lemma:

Lemma 1. If the simply connected domain G is bounded by the Jordan
curve C having a continuous tangent in every of its points and having its
boundary rotation « < 4n, there is at least one direction such that every straight
line parallel to this direction has at most one segment in common with the
domain G, i.e. at most two common points with C. In this case, for the sake
of brevity we shall say that G is convex with respect to this direction.

Lemma 1 can be proved using the following result, due to S. BANACH [1]:

Lemma 2. Let f(x) denote a function which is continuous and of bounded
variation in the interval (a, b). If N(y) denotes the number of roots x of the
equation y = f(x), we have :

(20) I |df (x)| = [ N(y)dy

i. e. the total variation of f(x) is equal to the Lebesgue integral of the function
N(y) [2].

Let us take for f(x) the angle of direction of the tangent to the curve
C mentioned in Lemma 1, where x is some suitable ‘parameter, for instance
the arc length. In this case N(y) denotes the number of tangents with the.
angle of direction congruent to y mod #, 0=y <mn.. Let us dédnote by e
k=1,2,... the measure of the set of values of ¢ for which N(y)=+k. It is
easy to see that e,,,=0, k=0,1,2,..., because if the value of N(y) is
odd, at least one of the points where the tangent has the direction £ is a
point of inflexion. Thus we have ;

(21) GJ‘N(y)dy=2e,+4e4+6eﬁ-i—. 2
_ We have further evidently
(22) ete et .. =m.

On the other hand, according to the definition of the boundary rotation, the
total variation ot f(x) is equal to the boundary rotation « of C. Thus, accor-
ding to our supposition « <4z, and by (20) and (21), we obtain

(23) 2e,+4e,+66,+4... <4m.
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Comparing (22) and (23) we obtain ¢,>0, i.e. there exists a direction y
such that the curve C has only two tangents parallel to the direction y,
which 1mpl:es that the domain G lS convex with respect to ‘this direction.
Thus Lemma 1 is proved.?)

Now it is easy to complete the proof of Theorem IV. Let us consider
the function

[@)= %f(rz*) N W PN

(0<r<1), and let us denote by G, the domain on which the unit circle is
mapped by f,.(z). Evidently the boundary of G, is an analytical curve. The
boundary rotation «(r) of G, is evidently equal to U(r) defined by (2). Now
it is easy to see, that it follows from our hypothesis « <4n that U(r) <4=
for r< 1. As a matter of fact this is evident if e<4n, and if e=4n it
follows from the fact that log U(r) is a convex function of log r (see F. RIESZ
[7]) and thus is strictly increasing for those values of r for which U(r) <2=.
Thus Lemma 1 can pe applied and we obtain that the domain G, is convex
with respect to a certain direction. Usmg the theorem of ROBERTSON mentioned
above we obtain

(24) _ r*-Ya,|<n,
As (24) holds for any r< 1, our theorem is proved.
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?) Lemma 1 can also be proved in an elementary way. Elementary proofs have been
communicated to me by VeronNica S6s and N. G. pE Brunx,



