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The “Two-Series Theorem” for symmetric random
variables on nilpotent Lie groups

By D. NEUENSCHWANDER (Biel-Bienne) and H-P. SCHEFFLER (Dortmund)

Abstract. The classical “Three-Series Theorem” due to Kolmogorov is carried
over to symmetric random variables on certain nilpotent Lie groups.

1. Introduction

The classical “Three-Series Theorem” for real valued random variables
can be stated as follows: Let (X,,),>1 be a sequence of independent ran-
dom variables and let S, = X1+ --+X,,. Forc > 0let X, . = X, 1{x,,|<c}
denote the truncated random variable. Then the almost sure (a.s.) con-
vergence of (S, )n>1 is equivalent to the convergence of the three series
Yot PUXR] > ¢}y D051 E(Xae) and 32, o, V(Xy ), where E denotes
the expectation and V' the variance of a random variable. (See e.g. [6,
Theorem 1V.2.3].)

The aim of this note is to carry over this “Three-Series Theorem” to
symmetric random variables with values in nilpotent Lie groups G: We
show that for simply connected nilpotent Lie groups G the convergence
of the series of tail probabilities and the truncated second moments of
independent random variables X,, imply the almost sure convergence of

(e.)

the product [[ X,, = X;7-Xo---. If G is step 2-nilpotent it turns out that
n=1

these conditions are also necessary for the almost sure convergence of the

product.

Mathematics Subject Classification: 60B15, 60F15.
Key words and phrases: Three-Series Theorem, almost sure convergence, nilpotent Lie
groups, Heisenberg groups, groups of type H.



174 D. Neuenschwander and H-P. Scheffler

Examples of simply connected (step 2-) nilpotent Lie groups are the
Heisenberg groups H given as R24t! =2 R4 x R? x R with the product

€T - y — (x/ +y/7x// +y//7x/// +y/// + %((x/,y//> _ <x//’y/>)) e Rd X Rd X R
for z = (2/, 2", 2"), y = (v, 9", y"") € R? x R x R. The so-called groups
of type H (cf. [4]) are all simply connected step 2-nilpotent.

Using the Campbell-Hausdorff formula, a simply connected nilpotent
Lie group G can be realized as G = R? for some non-negative integer d
equipped with the multiplication

1 1
where P : R? x R — R? is a polynomial mapping in the components of x
and y. (See [1, (1.2) Proposition].) Clearly, the neutral element e of G is

0 and 27! = —z for every z € G. G is said to be nilpotent of step r > 0,

if for the lower central series of G: G (1) def G, G def |G, G(j—1)] we have

G(r+1) = {0}. Then it follows from the Campbell-Hausdorff formula that
the polynomial mapping P in (x) is of degree < r.
Now let (X,)n,>1 be a sequence of independent G-valued random

N
variables with probability distributions (v,),>1 and let Sy def IT X» =
n=1

X1+ X5+ Xy denote the partial product. Since by [3, XII.3 Theorem 2.3]
every simply connected nilpotent Lie group is aperiodic (cf. [2, 2.2.18 Def-
inition]), the convergence of (Sy)n>1 in probability, almost surely, and
in distribution (i.e. the weak convergence of (v; * ---* vx)N>1) resp. are
equivalent. (See [2, 2.2.19 Theorem]|.) Using this fact, for the sufficiency
part of our theorem it is enough to show that our conditions imply the
convergence in distribution of (Sy)n>1. We will do this by using Fourier
analytic methods on G, especially Lévy’s continuity theorem.

2. Results

Let G be a simply connected nilpotent Lie group. A G-valued ran-
dom variable X is called symmetric, if X and X~! = —X have the

same distribution. Let £(X) denote the law of a random variable X.

For ¢ > 0 let X, f x 1{x|<c} denote the truncated random variable,
where ||X|| is the Euclidean norm of X. (Note that we have realized G
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N

as Rd.) Furthermore for z1,zo,... € G we define [[ x, = x1-22... 2y
n=1

00 N
and [[ zp, = lim ] x,. We will prove
n=1 N—oopn=q
Theorem 1. Let G be a simply connected nilpotent Lie group and
let (Xy)n>1 be a sequence of independent symmetric G-valued random
variables.

(a) If for some ¢ > 0

(1) D P{IX,| > ¢} <
n=1
and
(2) S B X < o0,
n=1

o0
then [] X, is a.s. convergent.
n=1

o0
(b) If furthermore G is step 2-nilpotent and [[ X, is a.s. convergent,
n=1

then (1) and (2) hold for every ¢ > 0.

Remark. It is easy to see that if condition (1) and (2) hold for some
¢ > 0, then they hold for any ¢ > 0. Hence we may assume that c is small
enough.

First we need an auxiliary result.

Lemma 1. Under the conditions (1) and (2) of the Theorem the se-

N
quence (C( I Xn)> is weakly relatively compact.

PROOF. Assume c € ]0,1] small enough. We show that the sequence

N
( II Xn,c) is L2-bounded (with respect to || - ||);
n=1 N>1

N
then (E( I Xn’c)> is weakly relatively compact and the assertion
n=1 N>1

follows from condition (1) and the Borel-Cantelli Lemma. Write every
component of [z, y] in the form x* - A-y with a suitable matrix A. Consider

the expansion F(Q) of E|| Hi:;l Xn.c||? as expectation of a polynomial in
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the elements of the matrices A and in the components of the X,, .. Now,
for @ perform the following procedure (P) (in the prescribed order):

i) Delete any monomial where there is an n such that only one com-
ponent of X,, . occurs, and actually in first power.

ii) Replace any element of one of the matrices A by its absolute value
and any component on an X, . by || X, |-

iii) Replace any exponent (> 0) of a power of an ||X,, .|| by 2.

By the symmetry, we have EX,, . = 0, so i) does not change the value of
E(Q). Clearly, ii) does not decrease the value of (). By i), no exponent 1
remains before iii), so (since ¢ < 1) also iii) does not decrease the value of
Q. Hence the procedure (P) yields an upper bound E(Q’) for E(Q). Now
the degree of ' in the || X, .|| is bounded (as N — oo) and so it is (by the
nilpotency) in the absolute values of the elements of the matrices A. So
(by the independence) E(Q’) may be majorized by a constant times a fixed
power of > >° | E||X,,c||?, hence by condition (2) E(Q’) (and thus E(Q))
is bounded (as N — 0o), which proves the asserted L?-boundedness.

To fix notation we now recall some basic facts about Fourier analysis
on Lie groups (see [5, p. 115-118] for details):

Let g = R? denote the Lie algebra of G with basis {Y; = ¢; : i =
1,...,d}, where {e;}i—1.. 4 is the natural basis of RY. As usual we regard
every element Y € g as a left invariant differential operator on G. Fur-
thermore let Irr(G) denote the set of all irreducible unitary representations
of G. For D € Irr(G) let H(D) be the representation Hilbert space of D
with inner product (-,-) and norm || -[|. A vector u € H(D) is said to be a
C°-vector (of D) if the function x — (D(x)u,v) is C* for all v € H(D).
We denote the subspace of all C*°-vectors by Ho (D). It is well known that
Ho(D) is a dense subspace of H(D). For a probability measure v on G we
define its Fourier transform o by

((Du, v) /G (D (), v) dv(z)

for all D € Irr(G) and all u,v € H(D). In this context some of the usual
properties of characteristic functions, especially a continuity theorem hold.

PROOF of Theorem 1. First we show that conditions (1) and (2) imply

(3) Y Pn(D)u—uf| < o

for all D € Irr(G) and all u € Ho(D), where v, is the distribution of X,,. In

fact consider the symmetric open neighborhood U, et {r e G : ||z|| < ¢}



The “Two-Series Theorem” for symmetric random variables ... 177

of 0 € G. Following [5, Lemma 5.1] we have for D € Irr(G) and u € Ho(D):

u—u—ZmD Z xx;T z)D(Y;)D(Y;)u

3,7=1

for all z € Uy. Here each T'(D)(x) is a linear contraction (i.e. a bounded
linear operator on H(D) such that ||T'(D)(x)|| < 1). For u € Ho(D) let

d . d
el = Nlull + 327 ;21 ID(Y)D(Yy)ull. Using |z, < 355, =7 = [z for
all x € U. and the symmetry of the X,, we get

H/ 2)u— u) dvn (@ %Z/ Je|> v, ()| D(Y:) D(Y; ]

< Cllull Bl Xn o,

for some constant C' > 0. On the other hand

| (D@ =) dn(a)]| < 2lPUX > ¢} < 20l UK = ¢}

so we finally conclude

lom (D — | < H/UC(D(J;)U — ) vy (a)| + H/CUC(D(x)u — ) vz
< Cllull« (B Xn, )

and (3) follows from (1) and (2).

Since by Lemma 1 (£(Sn))n>1 is weakly relatively compact we have,
using the continuity theorem of the Fourier transform (see [5, p. 117 and
Lemma 2.1]), only to show that

N
= [[ - (D)u
n=1

is convergent in H(D) for every u € Ho(D) and every D € Irr(G). But
|0 (D)|| <1 and so

| ﬁ P (D)u — NﬁK 7n(D)uf| = | ﬁ 7 (D) (I - NﬁK (D))
el ne1 n—=1 n=N+1
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:H((ﬁN-H(D) — )+ on41(D)(Ong2(D)— 1)+ ...
oot v (D) gk —1(D) (O (D) = 1) )ul|
N+K

< Y oDyl

n=N+1

Using the above estimation and (3) we conclude that (fin(D)u)n>1 is a
Cauchy sequence and hence convergent in H(D). This completes the proof
of the first part of our Theorem.

For the proof of the second part we assume that G is step 2-nilpotent

N
and [[ X, is a.s. convergent. By the symmetry, the processes

n=1
N N
i), i)
n=1 N>1 n=1 N>1
N N
have the same distribution, (since — [[ Xnt+1-n = [[ —(Xn)),
n=1 n=1

N
SO {— I XN+1,n}N>1 is a.s. a Cauchy sequence, hence

n=1

N—oo

N
lim [] Xnt1-n
n=1

and thus

N N
lim (H X+ 1] XNH_n)
n=1 n=1

N—o0

exist a.s. But

N N N 1 N
HXn+HXN+1—n:ZXn+§ Z [Xn;Xm]+ZXN+1—n
n=1 n=1 n=1

1<n<m<N n=1

1
+ 3 Z (XNt1-n, XN+1-m]

=03 Xty B (X X+ (X, X))
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hence condition (1) and (2) hold for every ¢ > 0 by the classical Three-
Series Theorem in the vector space case.

Remark. Interestingly enough, our Theorem implies that if G is step

oo
2-nilpotent and [] X, is convergent, then an arbitrary reordering of the
n=1

o0

X, does not disturb the convergence, i.e. [] X,(,) is convergent for every
n=1

permutation o of N. It would be interesting to investigate, for a spe-

cific sequence (X,,)n>1, what the class of possible limit laws of [] Xy
n=1

(0 any permutation of N) looks like.
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