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Problems and results on the differences
of consecutive primes.

By P. ERDOS in Syracuse (U.S.A.).

Let p, < p, < ... be the sequence of consecutive primes. Putd,=p,,,—p»
The sequence d, behaves extremely irregularly. It is well known that limd,=oo
(since the numbers n!--2, n!'+-3,..., nl-n are all composite). It has been
conjectured that d,=2 for infinitely many n (i. e. there are infinitely many
prime twing). This conjecture seems extremely difficult. In fact not even

lim d, <oo, Or even lim d, =0 has ever been proved. A few years ago

logn
I proved!) by using Bruns’s method that
. d,
(1) lim og < 1.

lim loaé'n =1 is an immediate consequence of the prime number theorem.

WESTZYNTHIUS?) proved in the other direction that

(2) lim Tog 7 =00
In fact he show that for infinitely many n,
d, > logn . log log log n/log log log log n.
[ proved®) using Brun’s method that for 'infinitely many n

logn.loglogn
@) By (logloglogn)® *

CHEN?) proved (3) very much simpler without using Brun’s method,

1y Duke Math. Journal, Vol. 6 (1940), p. 438—441.
%) Comm. Phys. Math, Soc. Sci. Fenn., Helsingfors, Vol. 5 (1931), No. 25. p. 1-3T.
%) Quarterly Journal of Math., Vol. 6 (1935), p. 124—128. In this paper one can find
some more litterature on the difference of consecutive primes.
4) Schriften des Math. Seminars und des Instituts fiir angewandte Math. der Univ.
Berlin, 4 (1938), p. 35—55.
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and RANKIN®) proved that
logn.loglogn .loglog loglogn
) ¢ (log log log n)*
In the present note I prove the following

Theorem: (., dn)
— N (d,, @.+, )
(5 lim A skt

In other words to every c there exist values of n satisfying the inequali-
ties d,>clogn, d,., > clogn.

(miﬂ (d.,d 1., d..+:-)]

It can be conjectured that lim log n

=oo forevery k,
but / cannot prove this for k> 1.

It can also be conjectured that lim I.“_a.x_i_((%ﬁl <1, but 7 cannot
prove this either.
Proof of the Theorem?®). Let n be a large integer, m=¢.logn,

where ¢ is a small but fixed number, f(m) tends to infinity together with
m and f(m)=o(logm)"*), N= [[ p., g. denotes the primes = (log m)?

pi=m
r. the primes of the interval [(log m)®, m'/=loglogm] s, the primes of the interval
(m"*“"’!l“l"', %}, and ¢ the primes satisfying%gf,-gm.

Our aim will be to determine a residue class x(mod N) so that
6) (x+1,N)=1 and (x+k, N)==1 for all |kj=mf(m) and k= +1.

Suppose we already determined an x satisfying (6). Then we complete the
proof as follows: Consider the arithmetic progression (x4 1)+4dN, d==1,...
Since (x4 1, N)=1 it represents infinitely many primes, in fact by a theorem
of LINNIK7) the least prime it represents does not exceed N® where ¢, is an
absolute constant independent of N. Now by the prime number theorem,
or by the more elementary results of TCHEBICHEFF, we have

Ni-‘lz( Hpi)cl < ezmc,= nzee; < n"fl

p=m
for e<—%, or there exists a prime p, satisfying
1
) p;<n”, pj=(x+1)+dN.

5) Journal of the London Math. Soc,, Vol. 13 (1938), p. 242—247. For further results
on the difference of consecutive primes see P. ErnGs and P. TurAN, Bull. Amer. Math.
Soc., Vol. 54 (1948).

6) We use the method of Chen.

7) On the least prime in an arithmetical progression, I. The basic theorem, Math.
Sbornik, Vol. 15 (57), No 2, p. 139—178. Il. The Deuring—Heilbronn phenomenon, Math.
Sbornik, Vol. 15 (57), p. 347—368.
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It follows form (6) that
(8) Pix—p;=mf(m), p;—p;_,=mf(m).
Thus from (7) and (8)

©) Diss—P; m f(m) Pi—Pia_ mf(m)

logp; — logn A B, logp;, — logn ) o
which proves (5) and our Theorem is proved.
Now we only have to find an x satisfying (6). Put
(10) x=0(modg,), x=0 (modSs,).
Let |k|< mf(m), have no factor among the ¢'s and s’s. Then we assert

m
2
r’s. For if not then k would be greater than the product of the least r and
the least f, i. e.

k=5 (logm)* > mf(m); (f(m)=o(log m))

an evident contradiction,

Denote by u,,u,,.. , u; the integers <|mf(m)| all whose prime factors
are r's. We estimate & as follows: We split the «’s into two classes. In the
first class are the #’s which have less than 10.loglogm different prime
factors. The number of these u’s is clearly less than

(1 ]) (mi,!,m,loglogm. log m) 10loglogm < m’n

(since the number of-integers of the form p® p* <mf(m), p < m'reloglogm
is less than /m'wloglogm log m),

For the u’s of the second class »(u)=10.loglogm (v(u) denotes the
number of different prime factors of u), Thus from

that k is either +1 or a prime > or has all its prime factors among the

m f(m)
> ey ﬁj 2" < emf(m) . logm < m (log m)?
=1

we obtain that the number of the u’s of the second class is less than
m (log m)* m

‘(}2) 21(]logiogm (log m)e b

Hence finally from (11) and (12)

e M ]
(3) % o[logm'

Denote now by v, v, ..., v, the integers of absolute value < mf(m)
which do not satisfy the congruence (10). Then the v's are either —1 or

are u’s, or of the form —+p, 321— <p=mf(m). Thus by (13) and the resuits
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of TCHEBICHEFF about primes

(14) g <o)

logm °

Suppose we already determined for i <j a residue class A” (mod r,)
so that

(15) x=4"(modr), A°+—1, i=12...,(—1).

Denote by v, ..., v} the »’s which do not satisfy any of the congruences
(15). There clearly exists a residue class mod r; which contains at least
n,/r, of the v's. Denote this residue class by 4. If 4”==—1(modr) we put

- (16) , x= 4" (modr,).
If on the other hand 4”=—1 (modr,) we distinguish two cases: In the

first case the residue class 4,” (modr,) contains less than —;—q,- of the »"'s.

Then there clearly exists a residue class 4y ==4;" (modr;) which contains
more than 7,/2r, of the v*”s, Put for these rs

(17) - x=24" (mod r).
We continue this operation for all the s and let us first assume that
for every r; either AY==—1 (mod r;) or that the first case occurs, Denote

by Vi, Va,..., V, the v's which do not satisfy the congruences (16) and (17).
Clearly

k. mf(m)loglogm ( m ]
(18_) ggnﬂ(l 23'5)< (log m)* uo'logm
since
Cl - ] CQ
—< l—— —
gz < (= 2) Vs
Put now

(19) - x=—V(mod{), ‘1=i=p,

where #; is chosen so that V,—1==0 (mod{) and the different V, correspond
different #. This is always possible since the number of prime factors of
V;—1 is less than clogm and number of #'s equals n(2m)—=(m), and we
have by (18) and the results of TCHEBICHEFF

n(2m) —n(m) > ¢, %ﬁ > o-+clogm.

For the 's not used in (19) we put
(20) x=0 (modt).
The Congmences (10), (16), (17) and (10) determine x (mod N) so that

(6) is clearly satisfied, which proves our Theorem in case the second case
never occurs.
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Assume now that the second case occurs for some r's. Let r; be ther
of smallest index for which the second case occurs. Consider the congruences
(16) and (17) for i</, and denote again by o{?,.. .,vé;': the »’s which do
not satisfy (16) and (17) for i <j. By our assumption the arithmetic pro-

. - l ’ -
gression — 1 -}dr, contains at least 5 7 of the v*s and since all +*'s are

less than mf(m) in absolute value, we obtain
4mf(m m
¥ —f.L*) . (m)
1
and the proof is completed as in the previous case, thus our Theorem is
completely proved.

Added in proof (1. Aug. 1949). By a slight modification of the last
step of the proof we can show the existence of infinitely many n so that
logn loglogn log logloglogn

(log log log log n)*

min (d,,d,.,) > ¢

(Received January 31, 1949.)



