On the smallest convex cover of a simple arc
of space-curve.

By E. EGERVARY in Budapest.

A bounded convex point set may be defined as a point set which is
identical to the set of its chords. More explicitely, if w(S) denotes the set
of all points contained at least in one chord (=: segment of straight line joining
two points of S) of the point set S, then S is convex if and only if
(1 w(S)=S_.

Adopting this definition of the process w, the smallest convex cover
Q(S) of a bounded point set S in the fhree-dimensional space R, is evidently
given by
(2 2(S) =w(@(S)),
while in general (S)+w(S).

Considering that in general the iteration of the process w is necessary,
it is natural to ask, whether there are point sets whose smallest convex cover
coincides with the set of their chords, i. e. for which
(3 Q(S) =w(S)
holds.

The question as to the validity of (3) is easily decided in the case
when the set w(S) of the chords of S is convex. Indeed in this case we
infer from (1) and (2) that

2(S) = w(@(S)) = o (S).

A well-known example of a set S, for which £(S)=w(S) holds is a
pair of convex point sets in R,. In this example however every interior point
of 2(S) is contained in an infinity of chords of S.

In the present note I shall discusse a classe {y} of space-curves in R,
which possess the following two properties

I 2(7)=w(y),

Il every interior point of (y) is contained in one and only one chord of y.

It is obvious that a space-curve containing four coplanar points cannot
possess the property II All the more surprising seems {o be the fact, (see p. 69)
that if y contains no four coplanar points then it possesses both properties |
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and II. Thus one of the results cf the present paper is that the properties I
and II together is equivalent to the fact that y does not contain four coplanar
points. The arcs of space-curves not containing four coplanar points, or
according to the terminology of HJELMSJEv, the simple arcs of space-curves
may be regarded as the three-dimensional analoga of the convex plane-curves
(not containing three collinear points). Their properties stated in | and Il
admit the following more intuitive formulation:

The smallest convex cover of a simple arc of space-curve is filled up
simply and without gap by its chords.

This result enables us to establish a simple formula for the calculation
of an integral extended over the smallest convex cover of a simple arc of
space-curve. Let us consider a simple arc given by the equations

x=x(t),y=y(), z=2(t); a<1=<b,

where x(f), y(f), z(f) have continuous first derivatives with respect to £. Let
us coincide the axis 2 with the terminating chord AB of the arc (i. e. the
chord joining the terminating points of tnhe arc):
@ x{a) =x(b) = y(a) =y (6) =0; z(a) <z(b).
Any point of the chord joining [x(t,), (%), 2(4,)] and [x(%), ¥(%), z(f;)] may
be specified by the equations

1+t,

x=1Fbw) + 1y,

3) g '*’ y(t)
aul +ts A
s z(t1)+ 2 z(ty),

and in consequence of the property I these equations establish a 1—1
correspondence between the interior points of £2(y) and the interior points
of the region characterised by the inequalities
(6) a=h<hth=sb; —1=sH=s1.

Hence, owing to (6)

b b +1
|| [ aaxayde=3 [ [ [, b, 6 222 ananat,
a(tli tﬁl ts
2 a a -1
Especially for the volume V of the smallest convex cover of y we get
+1b b
- _ 1 (((oxn2) £
ijfjdxdydzw 9 ” W) tdt dt,=
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x(t), x(t), x(t)—x(t,)
y(t), y(t), y(t,)—y(t)
2(h), (%), z2(t)—z(t)
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dt, dt,. ‘ (14t) (1 —t)dt,=




X(t), X(t), x(t) x(t), x(t), x(t)
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Furthermore changing # and t, we obtain according to (4)

X(t), X(t), x(t)
™ V=g f f y(&), Y&, 7(t)

Z(t), Z(t), Z(fl)

dt, dt,.

dt dt,=

SANL X y(’)):y(tl) L - X)), x(t)| .,
- 5J 2B db- 15w, 2 |90 T ef ”(’*’d”'f 2(t), z(t) | %6
LT &), x®) |, 20)—2(@) (] x0) )
—g) 2@} | 3, y0) =% f () y(t) | "

As an application I shall discusse a special case of the following
maximum-problem referring to space-curves which is as far as | know not
yet solved hitherto. What is the maximum of the volume of the smallest
convex covers of all arcs of space-curves which have a prescribed length L?

If we restrict ourselves to the subset of all simple arcs of space-curves
having the length L, then the maximum of the volume will be easily found
to be

Ls
®) Vo= 18735’
and this maximum is reached only for the arc of helix given by the equations
X = ke, cost
V6n
* H
y== Von sint O=t=2m.
£
= 2/3n ;
* % *

Let be y a simple arc with the terminating chord AB, suppose that
y has at each of its points P a tangent which varies continuously with P,
and consider the cone which projects y from a point C collinear with A
and B and separated form A by B.

This projecting cone is closed (i, e. its line of intersection with a sphere
having its centre at the vertex is a closed curve) because the projecting lines
of the terminating points A and B coincide.

Apart from the double generator-line passing through A and B this
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cone cannot contain any more double (or multiple) generator-line. Indeed,
a double generator-line would contain two points of y, which were coplanar
with A and B, contrary to our assunption on y.

Further the closed projecting cone must be convex (i.e. its line of
intersection with any plane must be a convex curve), because in the contrary
case the cone would have four coplanar generators and the points of y
projected by these four lines would be coplanar, contrary to our assumption.

Obviously the same statement holds if the point C, being collinear with
A and B, is separated from B by A.

In this way it is proved that from any point of the extension of the
terminating chord the simple arc y is projected by a closed convex cone
having only one double generator-line.

From this result we infer that the projecting cylinder of y parallel to
AB is a closed convex cylinder.

The cones which project the arc y from one of its terminating points
A, B, are not determined and their rble will be assumed by two cones which
will turn out to be the supporting cones (Stiitzkegel) of ¥ at A and B. The
cone at A consists of all lines projecting the interior points of y from A,
and of w1 angular region of the supporting plane passing through AB and
the tangent of y at A. This cone and the corresponding one at B are both
closed, convex cones in consequence of the same considerations as discussed
above, and thus they constitute indeed the supporting cones of y at A and B.

Let now the convex point set consisting
of all points interior to both supporting cones
be denoted by D(y). I assert that D(y) is
identical to the smallest convex cover of y.

To prove this assertion I will first show that

w(y)=D(y),
further, D(y) being convex

o(D(y))=D()
and hence we draw the conclusion that

Ly) =w(w(y)) =w(D()) = D).

In order to prove the relation m(y) = D(y)
take an arbitrary point Q in the interior of
D(y) Draw the plane QAB, which cuts y
in a single point Q, and draw a line 4
through Q parallel to AB. Let now the plane
QAB rotate monotonously round 4 until it
has made a half-revolution. During this ro-
tation the two points of intersection of y
with the rotating plane XYAZ4 are well de-
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termined and move continuously along y. Hence the chord of y joining the
points of intersection X, V¥ of the rotating plane and y as well as its inter-
section R with 4 move continuously along 4. In the initial position of XY4
this moving chord coincides with QB, while in the final position it coincides
with AQ. Hence the point of intersection of the moving chord and the line
A must pass (at least once) through the arbitrary interior point Q.

But, y being a simple arc, the moving chord cam pass only once
through Q, because in the contrary case y would contain four coplanar points.

In this way we have proved that through every point of the convex
region there is one and only one chord of y, i. e.

“’(7) _— D("):
therefore
Q) =w(@@))=w(D()=D(), q.e.d

In order to determine the simple arc 7* of a prescribed length L=}3./>0
whose smallest convex cover has a maximal volume, let us remark that

owing to (7)

. z2(b) F 4

foat ———-—-‘i@—’f[x(r)ym —y®£)dt—L5T.

where ¢ denotes the length of the terminal chord and T is the area bounded
by the orthogonal projection of y on a plane perpendicular to the terminal
chord.

We establish the following inequalities.

1. If p is the length of the normal section of the projecting cylinder
of y parallel to AB, then by the extremal property of the circle

I
T£4n'

2. If the projecting cylinder of y parallel to AB will be developed in
a plane then from the extremal property of the straight line we infer that

PHE=3A
3. 1f1>0, ¢ >0 then
Blrt—g)g=2P—(1—q)*(2l+q)= 21"
Hence V satisfies the relations

p’q Vo, ] SR g
¥ 3 lZns 12n 5 23"y

and the equalities are valid if and only if
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1. the projecting cylinder is circular, 2. the projecting cylinder being
developed on a plane, y becomes transformed into a straight line, 3. the
length g of the terminating chord satisfies

e e

o *ﬁ-

The only space-curve satisfying these conditions is obviously an arc of
- and corresponding to

V6=

a rotation 2z and a translation % Its smallest convex cover has the maximal
value (8).

a helix traced on a circular cylinder of radius
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