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Remark on a theorem of Fejér.
By P. TURAN in Budapest.

1. The investigation of the trigonometrical and power-series with mo-
notonic coefficients — a subject starting with ABEL and SCHLOEMILCH —
made a great progress recently mainly by the papers of FEJER and SzEGO.
Here we mean also the case when the coefficients
(1. 1) R TRAER
form a sequence of higher monotonicity; the sequence (1.1) is called, as
well-known, monotonic of order k if

(!' 2) a,— (T}an+l+[;]an+2_— +'a +(_"l) (:)anwg_o
(v=0,1,...,k; n=0,1,..).

These investigations are based on interesting properties of the partial-
sums
(1.3) 5.(2)=s0@@)=14+2+22+... 42"
of the geometrical series as well as of the iterated partial-sums s¥(2), where
these s¥(z) polynomials are defined recursively by
(1.4) s®@)=s§F@)+s¢"@2) ... +s&2@2) (k=1,2,...; n=0,1,2,...),
These properties refer partly to the behaviour on the unitcircle, partly on the
diameter of it, lying on the real axis. One of this properties is the following:’)

Given a non-negative integer u, the polynomials
(1.5) s¥(2) (n=0,1,...)
together with their first @ derivatives (if they are not identically O) are posi-
tive on the segment —1 <x<+1.

From (1.4) it follows as Fejér 1.c. remarked, that for the proof of this
theorem it is sufficient to show it for the sequence of the u'™ derivatives
only; i. e,

ol
(1. 6) A.(x.ﬂ)--=:—x,.-8.‘.“’(x)>0 (n=mp+1,...; —1<x<1).
This means that these A,(x,u#) polynomials have no zeros on the segment
—1 < x< 1. In what follows I shall show by a slight modification of FEJER’s
first proof for (1.6) that more exact information about this zeros can be
derived from the following

1) L. Fejer: Untersuchungen iiber Potenzreihen mit mehrfach monotoner Koeffizien-
tenfolge. Acla Sci Math. Szeged 8 (1936), p. 88—115.
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u
Theorem 1. All the zeros of the polynomials ‘%; s (x) (n=p+1,8+2,..)
lie on the periphery of the unit-circle.

For u=0 this asserts the well-known fact that the zeros of the polyno-
mials 14+2+2%+4...42" lie on the unit-circle. For g=1 this theorem was
proved by another method by EGERVARY 2). From this theorem 1 it follows that
the sign of the polynomials A,(x, #) is constant on the segment —1 < x<41;
since its coefficients are evidently non-negative, the non-negativity of the
A,(x, p)-s, i. e. the assertion (1.6) follows immediately. But we can show a
little more. We can show that the polynomials

"
A%, 1) = 5P (3)
are non-negative on the whole real axis if n is even; if n is odd then the
only zero on the real axis is at x=—1 and is simple. Summing up these
two assertions (which are interesiing of course only for negative x-values)
in one we can state it as

Theorem 2. We have on the whole real axis for any fixed non-negative
integer u
1 d* ()
T+xn  dxr "
2. In the proof an impartant role is played by the ultraspherical poly-
nomials 3) PY({). These are defined by the generatorfunction

(x)>0, (n=0,1,...).

® |
1 PO@)w" = -

s & POV = e ey

i j—-, these P)(Z)-s are the LEGENDRE-polynomials, if j—1 then the

2 ’
corresponding polynomials are the TCHEBICHEFF-polynomials of second kind.
They are even or odd polynomials according to the parity on n. It is well-
known ¢) that all the zeros of the polynomials P”({) are real, simple and lie
on the segment —1 <I <1 if e.g. /> 0; hence they can be written in the form
(2.2) Co=0c089,,0<9, <9 <... <9 <xn, p=m=],2,...,8

The idea of the proof of theorem 1 is representing the polynomials
A.(x,#) by ultrasphericai polynomials. Another instance of appearence of
ultraspherical polynomials in the theory of these s*’(z) polynomials will be
given in a forthcoming paper of FEJER and SzeGO ®); in this paper they
prove e. g. another theorem of EGERVARY?), according which the polynomials

?) E. EcervAry : Abbildungseigenschaften der arithmetischen Mittel der geometri-
schen Reihe. Math. Z.42 (1937), p. 221—230.

8) The classical theory of these polynomials is given e. g. in Szead’s book: Ortho-
gonal polynomials. Amer. Math. Soc. Coll. Publ. Vol. XXIII. (Newyork, 1839.)

4) See Szead’s book p. 113.

8) On special conformal mappings. (To be printed in Duke Math. Journ.)
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() =u(F) +iv(d)
give convex curves as map of the unit-circle by expressing the relevant ex-
pression
u'(9)v” (F) =o' () u” ()
as a square of ultraspherical polynomials.
3. To obtain the above mentioned representation of A,(x,u) we start
from FEJER’s generator-representation

1 <& |
gk 2y A5 2 =~y

valid for |2| < min ( 1, TJICT ) We suppose first x50, Then replacing x by ¢*®,
(5]}

z by ze ' 7, we obtain

. 0 .
i

S ot 6
(1—2)(1—x2)=(1—z2e 2)(l—ze 2)=1—-22 cos ?+z’

i. e. for all sufficiently small |2|
l_ Z“A (ele “) e—ni%zﬂ_ ]
gl ey (1—22 cos S+ 2T °

Comparing this with (2. 1) we obtain the required representation

(5]
(3.2) Aniu (€48, u) = K S8 (X)o=si® = ple™ 2 pAHY ( cos g-—)

dx#
or also
1
z n Vx+—=
(3.3) Anipu(X, u) = ddx - sf.i’,.(x) =ulx? P}““" (___2_7;) ’

If x=0, this has a sense only interpreting the right as limit for x 0.

To deduce theorem 1 from the representation (3.2) we have to remark
only from (2.2) and (3. 2) that A,;.(e'® 1) vanishes for

6=29, (v=12,...,n)

i e Auu(x, p) for
(3.4 X ==p2id» (»=12,...,n
which give n different values; since Au;u(x, ) is a polynomial of degree n,
the values in (3.4) are all the zeros.

To prove our theorem 2 we have only to ask when is one of the x,’s

real. Owing to 0 < ¥, <= only x,=—1 can occur. In this case 3..::%, i. e

P (0)=0. According to 2 this occurs if and only if 7 is odd and x=—1
1s then a simple zero of A..u(x,x). Q. e. d.

(Received October 8, 1949.)
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