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On some linear functional equations.
By N. G. pE BRruiN in Delft (Holland).

§ 1. Introduction.

In arecent paper!) we considered the asymptotic behaviour, when x — oo
of the solutions of equations of the type
(r.n w() fx)+/(x) —f(x—1)=0,
w(x) a given continuous function, w(x) > 0. We proved that any solution is
bounded for x— oo, and, if w(x), w'(x), w”(x) tend to O sufficiently rapidly,
that any solution tends to a periodic function with period 1. For instance,
all solutions of
(1.2) xf' (x) +f(x) —f(x—1)=0
1
1

are asymptotically periodic, if a« is a constant > 1. [f -~ < a < 1, the behaviour

is similar but slightly more complicated.
Here we prove, that if w(x) is not too small, then any solution of (1. 1)
tends to a constant. A sufficient condition is
1
(1.3) w(x);:log—x for x— .
It is very easy to prove this result if we suppose that w(x)=c, where
¢ is a constant > 1. We then have

F @)= Max_|FO)],

and hence f'(x)=0O(c~*). An example for this simple case is the equation
(1.2) for « <O. :

As applications we shall consider some equations of the form F’(x) =
=K(x) F(x—1) (K(x) a given continuous and positive funtion), which
can be transformed into the form (1. 1) Previously®) the examples K(x)=¢*

1) N. G. ne Bruwx: The asymptotically periodic behaviour of the solutions of some
linear functional equations. Amer. J. Math. 71 (1949), 313 -330. In the sequel this paper
is quoted as A. P.

) A. P. section 6.
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and K(x) =exp (x®) were shown to lead to the case of asymptotic periodicity.
In the present paper we consider some cases where the order of magnitude
of K(x) is considerably lower.

In view of these applications we consider the equation (2.5) instead
of (1.1). The result can even be extended to

W) f(x)+p() f(x) — ¢() f(x— 1) =1(),

where p(x) =14 0(®@), g(x) =14 O(P), r(x) = O(®P), and @ satisfies (2. 1).

The content of the present paper is independent from the one quoted

before.
§ 2. The convergence theorem.

Let @(x) be a function with

2.1 D(x),0 for x—» oo, rtb(x) dx < oo,
and let the continuous functions w(x) and q(;) satisfy, for x =0,
(2.2) g(x)=14+0{2(x)},
2.3) w(x) >0,

3 ; dt
(2.4) ;exp,—jlm‘=m.

We shall prove:
If, for x=0, f(x) satisfies

(2.5) w(x) f(x)+f(x)—q(x) f(x—1)=0,

then lim f(x) exists.
T+

Proof. Suppose x=n=1. By considering (2. 5) as a linear differential
equation, we can express f(x) in terms of g(x)f(x —1).
Putting

(2.6) W(e,p) = expz ,[w(t)

we find

@7 =W@) f(u)+f 20D w0 at.

We have_[lw(%%a‘r=.l — W(n,x), and hence, for some n (n=7=x)

(2.8) J)=W(n,x) f(n)+q(@) f(n—1) {1 —W(n,x)}.
Now put .
M,= __Qﬁsag;_ /() |, 2= o (), 0,= o f().
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We have |g(n)—1|< C®(n), where C is an absolute constant. It follows
from (2.8) that, for n<x=<n-41

[ =W, )M, +{1+CP(n) } M, {| —W(n,x) } =M, {14 C®(n)},
and so
M ,=M{14+C2(n)}.
Now (2. 1) shows that M, is bounded®), M, <M,B, where B depends on @
and C only. Put ogizixm | f(x)|=M

Again take n<x<=n-+1 in (2.8); we infer
Jx)=W(n, x) f(n)+L,{1— W(n, x)}+MC®O(n).
We have 1= W(n,x) ZW(n,n+1), and f(n) = £2,. Hence,forn<x=n+1,
f()<Q,— W(n, x) {2,—f() }+MCO(n) <
= —W(n,n+1) {L2,— f(n) } +MCD(n).
Consequently
2.9)  Qus{1—W(nn+1)} 2+ W(r,n+1) f(n)+MCO(n).
Analogously
0, ={1—Wh,n+1)}o,+Wa,n+1) f(n)—MCP(n—1).
Hence J, = £, — o, satisfies
(2. 10) 6,20, 0, < {1—W(n,n+1)} 6, 4+2MCP(n).
Since

é{l—W(n,n-i—l)}:O, g @(n) < oo

we easily infer that ,—0 for n— co. It remains to be proved that lim ,
exists.

From (2.9) we infer
'Q:l-i-l- ,,+MC¢(“)
and so

(2.11) g - oA ZMC(D(v) k=1,2,3,...).

It follows that
lim sup £, < lim inf 2,40,

where both sides exist, since 2, is bounded. Consequently lim £, exists.
This proves the theorem.

§ 3. Estimation of f(x) —lim f(x).
lim f(x)= lim 2 ,= lim o,=A.
Formula (2. l!)z;:es i 29
2,24— 3 MCo®).

3) An alternative proof was given in A, P., Theorem 1.

Put
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Analogously we find

w, <A+ 2 MCO(v)

and consequently, since ,—6,=f(x)sw0,+9, (n—1<x<n),
3.1 |f(x)—A| <6+ 2 MCo(») (n=x=<n+1).

d, can be estimated from (2. 10) by iteration; we obtain

@2 g8 IT0—Wo v i) +2MC 3 06) IT (1-W( j+)}

From (3.1) and (3.2) an estim#te for |f(x) —A| can be deduced whenever
w(x) and @(x) are known explicitly.

§ 4. Examples.
Condition (2.4) is easily seen to be satisfied if w(x)= g . Probably

the convergence theorem remains true if (2.4) is replaced by w(x) > _log )

whenever a is a positive constant. On the other hand, of w(x)=x"¢ a>%,
oscillating solutions of (2.5) do appear‘), if @>1 we even know?®) that lim
f(x) exists if and only if f(x) is a constant.

We will now give some examples of equations of the form

4.1 G'(x)=K(x) G(x—1) (K(x) > 0).
Example 1.

(4.2) G'(x)=x" G(x—1) (x> 0).

A special solution is G,(x) =x- 1. Putting

G(x)=(x+1) f(x) we obtain (x+1) f'(x)+/f(x)—f(x—1)=0.

Hence lim f(x) exists for any solution f(x). We have

n+1
- n42’

W(n, n+l)=exp) f:+l

and hegce, by (3.2) 4,.,=C,/(n+2)!. !l follows that for any solution of
(4.1) we have
Gx)=Ax+A+ 0O {([x+1]") 1}
I is not difficult to obtain an error term O{ - {x+2)} by means ofa
small modification of our argument,

1) A. P. section 4.
§) A. P. section 5.
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Example 2. We can also determine the asymptotic behaviour of the
solutions of (4.1) in cases where it is impossible to find special solutions.
To this end we try®) to find a function A(x) such that for the function

(4.3) 7(x) = log K(x) —Jh(x—t) dt— log h(x)

we have n(x) = O {®(x)}, where @ is a function satisfying (2.1). Then, if
H'(x) = h(x), the substitution G(x)= f(x)exp H(x) transforms (4. 1) into

S @)/ h(x)+f(x) — e f(x—1)=0.

A function A(x) can often be found by iteration. Suppose, for instance
that K(x) is large for x—»oco. Now starting with h,(x), suitably chosen,
evaluating the corresponding function 7,(x) by (4.3), and then taking
hy(x) = hy(x) 4+ n4(x) etc., it often turns out that for some finite number k
we have 7, = O(®P).

We consider a rather general case. Let K(x) satisfy

4 K 4 K’!
@. 4) lim K(9)=w, (?) —0@), F=0(2)
and let 4(x) be the positive solution of
(4.5) A(x) e*® =K(x).

The iteration process can be carried out succesfully by taking A, (x) =4(x)7).
We only give the final result, which can be verified directly. If we put

@6  GI= exp)| [ 20dt+ 4 16)— log (1+1()
1
the substitution G(x) = G;(x)f(x) transforms (4. 1) into an equation of the form
; 1., 1., 3

(2.5) withg(x)=1+0{@(x—1)}, w(x)={l(x)+§:1 (x) —7:1 ()1 4+ Ax))}
It is now possible to examine whether the convergence theorem can be
applied. This is the case, for instance, if 4'(x) >0, 4(x) < log x, that is, K(x)
satisfies apart from (4.4), the inequalities K’(x) >0, K(x) < x log x. Appli-

cation of § 3 will now furnish the order of the error term.
We state the result for the equation

G'(x)=xG(x—1)
Any solution is of the form

x[l-l+%)+—;-—l

aw={a+o(7)}* Vit

X

(1e* = x).

%) cf. A. P. p. 328.
7) If we take hy(x) = log K(x) the process does not terminate.
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Although (4.6) was introduced under the assumption that K(x) -»oo
for x— oo, it can also be used for K(x) bounded. If we only suppose

K(x)=0(), K‘(x)=0(¢'%). K"(x)=0(?)
we can prove that any solution of (4.1) is of the form
G(x)=Gi(x) {A+o()}.

Example 3. G'(x)=e*G(x—1).
It is easy to show that any solution tends to a constant for x — oc.

By a suitable substitution, however, we can obtain a more precise result. Put
N

- |
Gy(x)= %‘ bmet ) M 2 g L

»)

It is easily verified that the substitution G(x)= Gy(x)f(x) gives an
equation of the type (2.5) with w(x) ~e*, ¢(x) =1+ O(e"¥*). The estimates
of § 3 now give f(x) = A+ O(e~¥~). Hence any solution of G'(x)=e*G(x—1)
has the divergent asymptotic expansion

o " » 1
— (- —v(v=-1)-v2x
G\x)mA%,L;T]-)- A1

Still better results can be obtained by using the special soiution

1 2 "%’
—?(x-f-t) — g dt.

Go(x) =ﬂxp

(Received December 7, 1949.)



