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On the algebra of distributions.
By ALFRED RENYI in Debrecen.

Introduction.

A real function F(x) defined on the whole real axis which is non-
decreasing, continuous to the right and which satisfies the conditions
F(—o) =0, F(+4)=1 is called a distribution function (abbreviated d. f.).
If Fi(x) and F;(x) are both d. f.-s, we define their “composition” F,(x)* F,(x) by

(1) R #F@)= [ Fc—)dR).

Clearly F(x) = F,(x)* F,(x) defined by (1) is also a d. f. This operation of
composition is evidently commutative and associative; thus the family of all
d. f.-s form a semi-group with respect to composition defined by (1). This
semi-group has a unity element E(x) defined by E(x)=0 for x <0, E(x)=1
for x=0. By the algebra of distributions we mean the algebra of this semi-
group.') The algebra of distributions is of central importance in probability
theory, as the composition of distributions is closely connected with the
addition of independent random variables. If §, and &, are independent random
variables having the d. f.-s F,(x) resp. F,(x) the d. f. of § & is given by
(1). In probability theory usually the distributions of the variables &5, ...,5,

are known and it is asked for the distribution of the sum Z" E, or after some
k=

properties of this distribution. As a matter of fact the various well known
forms of the laws of large numbers and of the central limit theorem are
answers to questions of this type. Besides these problems of composition,
problems of a different kind, problems of factorization have also been consi-
dered. By a factorization problem we understand a problem, in which the
distribution of a sum of random variables is known, and — under some
additional conditions — the distributions of the components are to be deter-

1) Cf. E. HiLuEe : Functional analysis and semi-groups, American Math. Soc. Colloquium
Publications, Vol. 31 (1948).
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mined. As an example we mention the following remarkable theorem of H.
CrAMER?) : Every factor of a normal distribution is also normal; by other
words if F(x) = F,(x) *F,(x) and F(x) is the normal d. f with parameters

(m, o) i. e. if

3 F()=

it follows that F,(x) and F,(x) are also normal distributions with parameters

(m,, 0,) and (m,, o,), (clearly we have m,+ m, =m and ¢} + 6} = 0?). A similar

result has been proved by D. Raikov®) for Poisson distributions. An other

question which has been thoroughly investigated, concerns the factorization

of distributions into an arbitrary great number of equal factors. A d. f. G(x)

is called “infinitely divisible’’ if for any n=2,3, ... there can be found a
1 2

d. f. F(x) such that F(x)*F(x)%...%* F(x)=G(x). (It may be remarked,
that F(x) is not uniquely determined by this condition: in § 2 an example will be
given that there exist two different distributions @, and @, with @, % @,= @,% D,).
Theorems on infinitely divisible distributions of fundamental importance have
been proved by A. KOLMOGOROFF!), A. KHINTCHINE®) and P. LEvY®), but there
are still many unsolved problems.”) Factorization problems are in general rather
difficult, owing to the fact that in the algebra of distributions there is no cancella-
tion law (i. e. it may occur that F,*F,— F,*F; but F, 3 F;; this has been
remarked first by KHINTCHIN®) ; an example will be given in § 2). In this con-
nection it may be mentioned that no distribution, except the translations of the
unity distribution (i. e. except the d. f. E(x—m) where m is an arbitrary real
number) has an inverse; by other words if F(x) is a given d. f. there exists a d. f.
F*(x) satisfying F(x)*F*(x)= E(x) if and only if F(x)==E(x—m). This can
be proved for instance as follows: let a(f) and b(f) denote measurable real
functions defined in the interval (0, 1) having F(x) resp F*(x) as their d. f.-s;
for example we may take for a(f) resp. b(f) the inverse functions (in the ordinary
sense) of F(x) resp. F*(x). Let us define in the unit square (Su<1;0<v<1)
the functions a(u,v) =a(u) , b(u,v)=b(v). The functions a(u,v) resp. b(u,v)

?) H. Cramer: Uber eine Eigenschaft der normalen Verteilungsfunction. Math. Zeit-
schrift 41 (1936), 405—414.

) D. Ramgov: On the composition of Poisson laws, Bull. Acad. Sci. URSS, Ser.
Math. (1938), 91—120.

%) A. KoLmoGoROFF : Sulla forma generale di un processo stocastico omogeneo, Atfi
Accad. naz. Lincei, Rend. 15 (1932), 805—808 and 866 — 869.

%) A. KminrcHine : Contribution a I'arithmétique des lois de distribution, Bull. Math.
Univ. Moscou 1 (1937), 1-31.

8) P. LEvy: Théorie de I'addition des variables aléatoires, (Paris, 1937) and Processus
stochastiques et mouvement Brouwnien, (Paris, 1948).

) Cf. H. CraMEr: Problems in probability theory, Annals of Math. Statistics 18
1947), 165 —193.
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have (as functions of two variables in the unit square), the d. f.-s F(x) resp.
F*(x), further a(u,v) and b(u,v) are clearly independent. Let us apply now
a measure preserving transformation of the unit square into the interval [0, 1];
a(u,v) and b(u,v) are thus transformed into two functions — say A(f) and
B(t) — which have the d. f.-s F(x) resp. F*(x) and which are evidently
independent. It follows that the function C(f)=A(f)+ B(f) has the d. f.
F(x)* F*(x) = E(x) i. e. C(t) is equal to 0 almost everywhere, which contradicts
the independence of A(f) and B(f) except if A(f) is equal to a constant-m
almost everywhere, i. e. except if F(x)=E(x—m) (in the latter case we
have F*(x) = E(x-+m)) which proves our assertion. The idea of the above
proof is due to F. RiESz, to whom I am thankfull for some valuable remarks.

In the present paper we shall consider some factorization problems of
the following type. Let G(x) denote a d. f. and let 4,, 4,,...,4, denote an
n-tuple of real numbers which are different from 0. If there exists a d. f.
F(x) such that if §,&,...,§, are independent randon variables all having

the d. f. F(x) then the randon variable n defined by

4 =245+ 45+...+ 45

has the d. f. G(x), we shall say that G(x)is (4,,4,,..., 4,)-divisible and shall
write G=F(,,4,...2,) Or also F=G/[4,,4,..4,). In this connection the
following questions are of interest:

A) If (4,,4,,...,4,) is an arbitrary n-tuple of real numbers (4,40; k=1,2....,n)
we may ask which distributions are (4,, 4,,...,4,)-divisible? The tamily of
all (4,,4,,...,4,)-divisible distributions shall be denoted by FI[i,,4,,...,4,].

B) If the d.f. G(x) belongs to the family F[4,,4,,...,4,] we may ask
whether F(x) = G(x)/(,4,...,4,) is uniquely determined or not?

C) If G(x) belongs to the family F(,,4,,...,4,) further if we know
already that F= G/(4,,4,,...,4,) is uniquely determined, we may ask how
to calculate F(x) or some of its parameters (its mean value, its standard
deviation, its moments or semi-invariants, etc) explicitly ?

It may seem at the first sight that when considering the above questions
one has to begin by solving question A) and then proceed to questions B)
and C), which seem to be of secondary importance compared with question
A). As a matter of fact this is true from a purely logical point of view; on
the other hand from the point of view of the mathematical statistician questions
B) and C) are of primary importance while question A) does not occur
generally at all. As a matter of fact, from the point of view of statistics our
problem may be described as that of determining an unknown distribution
by means of indirect observations, i. e. observations bearing not on a single
variabie distributed according to the unknown distribution in question, but
on the sum n=24,§ +24,&--...4-4,§, where 4,4,,...,4, are known real
numbers while &,§,,...,& are independent variables having all the same

™~
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(unknown) distribution. In this case the existence of the unknown distribution
is beyond doubt, while the questions of unicity and explicit calculation present
themselves as important probleme: we have to know whether our observations
concerning n are sufficient to determine the distribution in question uniquely,
because if not, we have to change the design of our experiment (i. e. the
values of the 4,-s). If an appropriate set of 4,-s has been chosen (i. e. if the
unicity is ensured) we have to calculate effectively the parameters of the
unknown distribution.

In what follows we shall consider in the first place questions B) and C).
In § 1 we shall restrict ourselves to the case when the variable n defined
by (4) is bounded. In this case — which is the most important from the
practical point of view — problems B) and C) are relatively simple and can
be solved completely. In § 2 we consider the general case (n» unbounded).
In § 3 the problem will be generalized; we consider the simultaneous deter-
mination of more unknown distributions.

In spite of what has been said above, question A) is also of considerable
theoretical interest, but seems to be very difficult. We add only some simple
remarks. First of all it is clear that any family F(4,,4,,...,4,) is a subalgebra
of the algebra of all distributions: that is to say if G, and G, both belong
to F(4,,2,,...,4) so does G,*G,. As a malter of fact, we have

(5) (GI*GQ)/(LI!‘LJ’ seoy 1’- - Gll(j’h e -r)'n) ‘02/(1'1: 2‘21 . ”,l“).

By other words, F(,,4,,...,4,) is also a semi-group. It is interesting to
compare these subalgebras to two well-known subalgebras of the algebra of
distributions : the family of stable distributions F, and the family of infinifely
divisible distributions F,. A d. f. F(x) is called stable, if forany a>0,¢>0
and real b and g the d. f. F(ax+b)*F (ax- ) is also of the form F(Ax+ B)
with A > 0. By other words, a d. f. F(x) is called stable if the family of all
distributions of the form F(ax+b) (a> 0) form a subalgebra (with respect
to the composition defined by (1)). Let further F, denote the family of dis-

tributions which are contained in every F(4,4,,...,4) where > 2,40; F,
k=1

is also a subalgebra. Now it follows simply that F; is contained in F,, whereas
F, is contained in F,. The second assertion is trivial, while the first follows
by explicit calculation using the results of KHINTCHINE and LEvY®) on the
general form of stable distributions. That F; is not identical with F, follows
from the remark that the Poisson distribution, which belongs to F, belongs
to F(4,,4y,...,4,) if and only if all 2,-s are equal. The significance of the

restriction Zl,,+0 used in the definition of F, will be clear form the
k=1

results of § 1.

8) A, KuintcHINE and P. LEvy: Sur les lois stables, Comptes Rendus Acad. Sci.
(Paris) 202 (1936', 374—376.
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§ 1. Bounded variables.

Theorem 1. Let us suppose that G(x) ist the d. f. of a bounded vari-
able (i. e. G(x) is constant outside a finite interval) further that G(x) belongs
to F(A4,2,...,4,). It follows, that F(x)=G(x)/(4,2%s,...,4,) is uniquely

determined if and only if Zl 2,%0.
k=
Proof. Let us put A,= >, 4}; s=1,2,3,... . The necessity of the
k=1
condition > 4, = 0 is clear, because if A,=0 and = > 2, it follows
k=1 k=1

n= 2, A&(E -+ a) where a is any real constant; thus if F(x)=G(x)/ (4, 2g,..., %,)
k=1

it follows that also F(x—a)=0G(x)/(4,,4,,...,4,) for any real a, and thus
G(x)/(4,%q,...,%,) is not uniquely determined. To prove the sufficiency of
the condition A,40 we introduce the characteristic functions (abbreviated:
c. f) of F(x) and G(x) by puiting

(6) f(t)-—-j:"‘dF(x) gt)=| :‘”dG(x) (t real).

By a well known property of the Fourier-transform It follows that the relation
F(x) =G(x)/(4;,4,,...,4,) is equivalent to

(7 EM)=10at) [ (sl) . .. f(2,1).

As there is a one-one correspondence between the d. f. and its c. f. the
sufficiency of the condition A,5=0 in Theorem 1. is equivalent fo the following
statetement: If A,#+0 and g(f) is the c. f. of a bounded variable, there exists
not mere than one c. f. f(f) which solves the functional equation (7). It is
easy to see that the c. f. of a bounded variable is an entire function of
exponential type.’) As further it is evident, that the boundedness of

 feoa g 2,E, implies the boundedness of the variables &, it follows that in (7)

both f(f) and g(f) are analytic functions of exponential type. As f(0) =g(0) =1
there exists an 7> 0 such that f(f)50 and g(f)=0 in the circle || < r of the
complex plane. Introducing the functions ¢(f)=Ilog f(f) and y(f) =log g(f)
it follows that both ¢(f) and A(¢) are analytic in |{|{=r (we choose those
branches of log f(f) resp. log g(f) which take the value O for #=0). Now
we obtain from (7)

9 Cf. G. PoLya : Remarks on characteristic functions. Proceedings of the Berkeley
Symposium on Mathematical Staatistics and Probability, Berkeley and Los Angeles (1945—46)
115-123.
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®) 7(t)= 2 ¢ ().
Differentiating (8) s times (s=1,2,...) and substituting £=0 we obtain
©) 7*(0) = A,¢)(0).

It follows that ¢ (0) is determined for those values of s for which A,50.
Now we use the following elementary.

Lemma 1. Let 4,,2,,...,4, denote arbitrary real numbers and put

A= Zl: Jor s=1,2,.... If A;=0, the set of those values of s for which
k=

Ay;=0 is finite.

To prove Lemma 1 we remark that for s even evidently A,30, and
LJ

for s odd we may put A,=2A,p; where w, > py>...>u,. >0 and the
J=i

A;-s are integers + 0. It follows%{—rAl#O for s—co which proves our

1

Lemma. Applying Lemma 1, if f,(¢) and f,(f) are two solutions of the func-
tional equation (7), putting ¢,(t) =log £,(t) and @,(t)=1log fy(f) it follows
that ¢{"(0) =¢{"(0) for s=1,2,... except for a finite set of exceptional values
of s; thus ¢,(t) — ¢,(t) = P(t) is a polynomial in £, and thus f,({)=/1.(t) e P(t).
As both fi(f) and f,(f) are entire functions of exponential type, the polynomial
P(t) must be of order < 1. But as A,#0, s=1 is not exceptional and P(t)
must be a constant; finally as f,(0)=/f,(0)=1 it follows P(f)=0 and the-
refore f(f) =/,(f) which proves the sufficiency of the condition A,+0, and
thus proves Theorem I. The above proof furnishes also a complete solution of
question C) in the special case in which it is supposed that A,30 for
s=12,.... We obtain

Theorem 2. Let G(x) denote the d. f. of a bounded variable and let us
suppose that G(x) belongs to F(i,,4,,...,2,) where it is supposed that A,+0
Jor s=1,2,3,.... Let.g(t) denote the c. f. of G(x) and f(t) the c. f. of
F(x)=G(x)/(A,%,,...,4,) (the latter being uniquely determined according of
Theorem 1) further let us put

_ S &(ity
(10) log g(f)——g T
it follows that
an log ()= > 4.
=1 A. . S!
Thus if the semi-invariants g, of G(x) are known, the semi-invariants
fs of F(x) can be simply obtained by the formula f,— i—' From the point

of view of the statistician it is important to calculate the moments
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+|:n

(12) a, Jx’dF\x) s=1,2,...
of the d. f. F(x). Putting
(13) ﬁ.=fx-do(x) s=1,2...

we obtain by using well known relations between the moments and the semi
invariants the expression of the a, by means of the §,:

o}
ity
(14) &= ,ﬂ':*'”* J+ﬁ’ A AA A.]
= ﬁ‘+4ﬂ‘ﬁ‘(A,A, AJ"'W(N )"‘6’3?’3’(,4;44,'74"5_"/?274:'*‘3"'
ket:c. tA [A‘ A?A,+ A’+A ¥ v 2)

Theorem 2 includes the most important case, in which all 4,>0. On
the other hand if only A,#0 is supposed, we can calculate as above the
semi-invariants f, of F(x) for those values s for which A,#0, but for the
exceptional values of s the above proof gives no method for calculating f,.

We add still some remarks on the case A,=—0. We have seen that in
this case if there exists a solution F(x) there is an infinity of solutions, viz.
F(x—a) fon any real @ One may think that these are all solutions, i. e.
that F(x) is determined up to a translation, but this is not true. For example
let us consider the case 4,=—1, 4,— =1, that is we put n =E§, — &, and let
us suppose that % takes the values: —2,—1,0, 41,42 the cqrresponding
probabilites being: E% % % -g- 31—5, the following solutions for the inde-
pendent variables &, & are possible: &, & take the values a, a+ 1, a+ 2 witht
the corresponding probabilities : §»+V_, §’5—;0V_
5F2)5 1 5+2)5

0. At v
distinct solutions for F(x). But among the different solutions of our problem
(in the case A,=0) there can be at most one d. f. which is symmetric, i. e.
which satisfies the condition F(x)+ F(—x)=1. As a matter of fact, if the
independent random variables & k=1,2,...,n have a symmetricd. f. F(x),

the sum vh:z A&, has the same d. f. as the sum q,=z |4,|&;, because

or withthe corresponding

probabilities ; . Thus up to translations we have four
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E and —E, have the same d. f., and thus we may suppose that every 4, >0,
in which case Theorem 1 ensures the unicity of F(x). Evidently a symmetric
solution F(x) can exist only if G(x) is symmetric. But even if there is a
symmetric solution, there may exist other asymetric solutions also, as it is
shown by the following example: n=£§, — &, takes the values —2, —1,0,4-1,+2
; . SRR TR Ok - @ o B A
with the corresponding probabilities 81’8181 81’ 81 there exists a sym-
metric solution: &, & take the values —1,0,4 1 with the corresponding

probabilites : -—;—,%,-g- ; but besides this there exists an asymetric sokutiin
also: &, & take the values —1,0,41 (or the values a, a+ 1, a+2 with

4 1

arbitrary real a) with the corresponding probabilities: %,5,—(_—;—. These

examples are characteristic for the situation when A,=0.

§ 2. The general case.

We begin by remarking that in case it is not supposed that G(x) is
the d. f. of a bounded variable, but only that the c. f. g(f) of G(x) is analytic
in some interval —r<t<+r(r>0)andif A.$0for s=1, 2,... the assertions
of Theorems 1. and 2. remain valid.

Theorem 3. If the d. f G(x) belongs to F(4,%,...,4) where
A= ;1;:1:0 for s=1,2,..., further if the c. f. g(t) of G(x) is analytic

in an interval —r<t<-+r (r>0), it follows that F(x)= G(x)/4;,4q,...,4,)
is uniquely determined and its characteristic function f(t) can be calculated as
described in Theorem 2.

To prove Theorem 3. it suffices to remark that if g(¢f) is analytic in
(—r, +r), it is analytic on the whole real axis accordig to a theorem of
D. A. Raikov'?); thus it follows, by a theorem of S. MAZURKIEWICZ!') that f(7)
is also analytic in the same domain, and therefore we obtain, exactly as in
§ 1 that denoting by f, resp. g, the semi-invarianis of F(x) resp. G(x) we

have f,=~§‘—. It follows that f(f) is uniquely determined in a neighborhood

of the origir; and hence, by analytic continuation, on the whole real axis.
This theorem includes a special case of the theorem of H. CRAMER?): if G(xX)
is a normal distribution so is F(x): as a matter of fact the c. f. of G(x) is

10) Cf: A theorem from the theory of analytic characteristic functions, Bull. Inst.
Math. Méc. Univ. Towsk, 2 (1938), 8 —11; the theorem has been recently rediscovered
by R. P. Boas: Sur les séries et intégrales de Fourier a coeficients positifs, Comptes
Rendus Acad. Sci, (Paris) 228 (1949), 1837—38.

11) S. Mazurkiewicz: Un théoreme sur les fonctions caractéristiques, Bull. Int. Acad.
Polon. Cl. Sci. Math. 1940—1946, (1948), 1-3.
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o &
€ 3
refore f,—0 for s=3,4,....
Now let us consider the case when nothing is supposed about the
analytic character of g(f) It is easy to find examples showing that in this
case F(x) is not always unique. Let us consider the most simple case:
n=2,2,=2A=1. In this case it suffices to show that there exist two different
c. f.-s fi(f) and f,(f) for which f1(f) =/f3(f) is identically valid. Such a pair
may be constructed as follows: let f;(f) denote the c.f. of a randon variable
taking the values + (2k+4-1) (k=0,1,2,...) with the corresponding proba-

in this case g(t)=im t— this means g,=0 for s=3,4,... and the-

e 4
bilities W.
It follows

__8 < cos(2k+1)t __ 2|¢|
A= 2 a1 "%

for —a<t<= and is periodic with period 2s. Let further f;(f) denote the
c. f. of a random variable taking the value O with probability -—%— and the
values + (4k+2) (k=0,1,2,...) with the corresponding probabilities
2
m and thus

_ 1 4 & cos(4k+2)E 2|t
f’(t)_"'z"*'ﬁf.«. (2k+1)® i A

% <t<— and is periodic with period n. Clearly f,(¢)=|/i(f)| and
thus f3(t)==/fi(t), identically.

Using the above example it is easy to show that there is no cancellation
law in the semi-group of distributions. Let F,(x) and F;(x) denote the d. f.-s

corresponding to f£,(f) and f,(t). Evidently f,(t)=%(f1(t) + fo(t)) is also a

c. f, the corresponding d. f. shall be denoted by F,(x). As we have
@) L) =f(t)fo(t) identically, it follows Fy(x)*F,(x) = Fy(x)*Fy(x) but
Fi(x) == Fy(x).

Analysing the above example we see that, putting fi(t) =/fi(f)=g(?),
between two consecutive roots of g(¢)f,(f) and f,(f) are equal alternatively
to the same resp. to different branches of |/ g(f). This phenomenon can occur
only if g(f) has real roots; if g(f)3=0 for real # and f*(f)=g(f) (or more
generally if f~(t)=g(tf) with n=2) f(f) is uniquely determined as that

for—

branch of | g(f) which is equal to 1 for £=0. We proceed to prove that the
condition g(f)+0 for real ¢ ensures the unicity under fairly general conditions.
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Theorem 4. Let us suppose that the n-tuple of real numbers (4,2, ..., 1)
satisfies the following conditions :
a) hi=a,=...=24,F0 (1,=1) and |Aw+|<|d,|

Jor r=12,...,m; ny,=n—n,.

‘ln r
b) Putting u,= 1{ s (r==1.2..,.m)
1

M,

1 oo
T |u.|* < 1 holds, where p is a positive integer.
1 r=1

c) Putting Ay= 2 4], A0 for s=1,2,...(p—1).
k=1

Let us suppose further that the d. f. G(x) satisfies the following conditions :
d) G(x) belongs to F(4,,4y,...,4,)

+
e) the absolute moments B, = f |x*dG(x) of order s=1,2,...,p of G(x)

exist.
f) denoting by g(t) the c. f. of G(x) we have g(t)==0 for real 1.
It foliows that F(x)=G(x)/(%,%y,...,4,) is uniquely determined.
Before proving this theorem, let us mention some of its consequences :

+»
Corollary 1. /f n=2, 4,+4,+0 fu‘rther_ﬁxla’G(x) exists and

400

2(1) =_[e “*dG(x) 40 for real t, then if G(x) belongs to F(A,,4,), F(x)= G (x)/(%, %)

is uniquely determined.
+@

We shall prove later (Theorem 5) that the existence of le[dG(x) is

not necessary for the validity of this Corollary. Corollary 1 follows from
Theorem 4, because either 4, =4, in which case n,=0, n, =2 and conditions
a, b, c, are trivially satisfied, or 4,44, and thus, with respect to 4, 4,50,
|4,|4|4|, and therefore either |2,| > |4,| or |4,| <|4,|; in the first case con-
ditions a, b, and c are satisfied; the latter case can be reduced to the first
by interchanging 4, and Z,.

Corollary 2. If the moments of any order of G(x) exist, condition b)
may be omitted.

As a matter of fact, if condition a) is satisfied, it follows that condition
b) is also satisfied if p is a sufficiently large integer, and thus Theorem 4
can be applied.

Finally it is clear that if p=1, condition ¢) contains no restriction on
the A;-s, but in this case condition b) implies that A, 0. As a matter of
fact, we have
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o 3, ;nllzll(l——iﬁlm,l)m

nl r=
Proof Theorem 4. Let us suppose that there exist two different solutions
Fi(x) and F,(x) and let us denote their c. f.-s by f,(f) resp. fy(f). Let us

put ¢(t)=log % According to f), g(¢) 0 which implies that neither f,(f)

|| =y |44

nor f,(f) vanish for # real, and thus ¢(f) is a continuous function. According
to our hypotheses we have

(15) §q>(l,,f)=0.

Now according to e) the absolute moments of order s, (s=1,2,...p), of
G(x) exist, and it follows'®) that the same holds for both F,(x) and F,(x).
According to a well known theorem!®) we obtain that f,(f) and f,(f) are p
times derivable at f=0: as a matter of fact we have

(16) f}"(0)==i"|.a:r'df}(x) G=1,2).

As in the proof of Theorem 1. we conclude making use of c), that the first
p derivatives of log f,(7) and log f,(f) take the same values for ¢{=0. It
results that the first p derivatives of ¢(f) vanish at =0 and therefore (with
respect to ¢(0)=0)

(17) g(t)=0(t").

Now substituting t=—£~ we obfain from (15)

(19) P @ =1 3 g(u.0).
Applying (18) N times (N=1,2,3,...) we have
(19) s@=C0 3 g ).

ny hythet ...+ by, =N
hrz0;r=1,2,...n
Using (17) it follows

g N
(20) p@1=0(w (L 3t ).
Making use of condition b) this gives ¢(uz)=0 for any real u, which proves
our theorem.
The importance of condition b) is clear from the above proof. Note that
in case n, =n, condition b) is automatically satisfied.
Now let us consider the case n=2. We prove

13) MazurkiEwicz, L. c.1l)
8) Cf. H. Cramér: Mathematical methods of statistics, Princeton, (1946), p. 89.

D10
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Theorem 5. Let us suppose n=2, i,+2,+0. If G(x) belongs to
F(,, %) and the c. f. g(t) of G(x) does not vanish on the real axis,
F(x)=G(x)/ (A, 4) is um‘queiy determined.

Proof: The case 4,=4, is trivial, as it has been remarked on p. 144.

If 4, 4 4,, we may suppose |2;| < |4,|. Let us put l=-i:. If we define ¢(?)

as in the proof of Theorem 4 it follows
¢(t)=—o(21).

PO =(—=1) @)
and by virtue of || < 1 it follows ¢(t) =0.
The conditions of Theorem 4 exclude the case in which, putting

A= e max |4, we have 4,, =2 and 4,,=—A4 for some r, and r,, We now prove
=k=<n

a theorem including this case also. To simplify the notations let us introduce
the following definition: an n-tuple of real numbers (4,,4,,...4,) is called

Thus

pregular it Ai=4=...=2, =440, Lyu=d-a3=...=2pn=—14;

n, % ny; further putting u, = l"'?’" r=12,...n, (ng=n—n,—n,), we have
1 O

21 |2 <1

where p is a positive integer. We prove now

Theorem 6. Let us suppose that (A, 4y, ...4) is a p-regular n-tuple
of real numbers, furiher that conditions c), d), e), and f) of Theorem 4. are
satisfied. It follows that F(x)=G(x)/(%,4%y,...4,) is uniquely determined.

Proof. Let us define ¢(f) as in the proof of Theorem 4. We obtain
@) me(@)+mg(— 1)+ 3 9(uu)=0.
Putting ¢ (u) + ¢(— u)=vy(u), applying (22) with —u instead of # and
adding the indentity thus obtained to (22) it follows

l_- 1"

(23 ¢(u>——m2w(u,u)-

i |#,|?< 1 holds a fortiori.

Using the same argumenl as in the proof of Theorem 4 we obtfain
Y(u)=0, and thus ¢(—u) = — @(u). Substituting — ¢ (u) in place of ¢(—u)
in (22) it follows

(24) —m) g @)+ 3 9(4,8)=0.

Now we apply the above method again, and obtain by virtue of (21) that
¢(u)=0.

As we supposed (21),
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If n,==n, (n, and n, having the same meaning as in the definition of
p-regular n-tuples), we can not apply Theorem 6. Nevertheless in this case
we can also conclude that G(x)/(4,,...4,) is uniquely determined, provided
that (i, pg, . .. @,5) is p-regular. As a matter of fact, if n,=mn,, (24) gives

(25) g @(u,u)=0

and thus if (u,, g, ...u,) is p-regular, Theorem 6 can be applied. For example-
if n;==1, unicity is always ensured.

§ 3. More unknown distributions.

In this § we consider the following problem: let§, (k==1, 2, ..., n) denote
independent random variables, the unknown distributions of which are not
supposed to be equal. To determine the n unknown distributions, the know-
ledge of the distribution of n different linear forms

(26) 7?5=§C,1§k U=I,2,...ﬂ)

is necessary, and under appropriate conditions, also sufficient. We introduce
some definitions,- which are analogous to those employed in the preceding
sections. Let us denote the d. f. of §;, by F,(x) and the d. f. of 5, defined
by (26) by G,;(x) (k,j=1,2,...n). Let us denote the matrix (c;) by A. If
(26) holds, we shall say that the systerh (G,, G;,... G,) is A-divisible, and
shall write (F,, F,,...F,)=(G,, G,,...G,)/A. The class of all A-divisible
systems of n d. f.-s shall be denoted by F (A).

Theorem 7. If the system of distributions (G,, G,,...G,) belongs to
F(A) where A=(c;), further if the c. f. 2,(t) of G,(x) is an entire function
of order <2, it follows that the system (F,, F,,...F,)=(G,, G,,...G)/A is
uniquely determined if and only if the determinants D,=|c;| and Dy=|c%|
are different from zero.

Proof. First of all, if g(f) is an entire function of order < 2, the same
holds for the c. f. fi(f) of F.(x) for k=1, 2,...n, (according to the theorem
of MAZURKIEWICZ')), and thus also for the c. f. g;(f) of G,(x) for j=2,3,...n
also. To prove the sufficiency of the conditions D, =0, D, 4 0, we need the
following lemmas:

Lemma 2. Let a,,0,,...a, and 4,2y, ...4, denote real numbers, and
let us put

A= 2D ai.
k=1
If A,+0 and A, 0, the set of those positive integer values of s, for which
A;==0, is finite.
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The proof of Lemma 2. is analogous to that of Lemma 1. and may be
left to the reader.

Lemma 3. Let A=(c;) denote an n.n mairix of real numbers and let
us consider the determinants

D, =|cy|.
If D, % 0 and D, + 0, it follows that the set of those positive integer values
of s, for which D,=0, is finite.'*)

The proof of Theorem 7 follows step by step the pattern of proof employed
in proving Theorem 1, by using Lemma 3 instead of Lemma 1. In case D, does
not vanish for s=1,2,3,..., the semi-invariants of F,(x) can be explicitly
calculated in a similar way as the semi-invariants of F(x) have been deter-
mined in Theorem 2.

The necessity of the condition D, 4= 0 is readily seen. As a matter of
fact, if D,=0 and (4, 4,...,%) is a non-trivial solution of the homogeneous

system of equations > ¢, ,=0 (j=1,2,...,n) it follows that if the sequ-
k=1

ence of variables &, satisfie (26) the sequence & =& +f (k=1,2,...,n)
represents an other solution. To prove the necessity of the condition D,5-0,
let us suppose that for a given matrix A ==(c;) we have D,=0 Let g, denote
a sequence of positive numbers, 6, =h>0, (k=1,2,..., n). Let § denote a
normally distributed random variable with parameters (0, o). It follows that
7;, defined by (26) is also normally distributed with parameters (0, ¢,) where

=gc}, o} If (,,%,...,7,) denotes a non-trivial solution of the homo-
geneous system of equations ZC},-:,:O, let us put o} = a’ + 2':2
k=1

hi
.l'

where t=max |7,| (note that according to our suppositions of 4 —
s Su
h!

>o’——> >0 for k=1,2,...,n). It follows that if & denotes a normally

dlstnbuted random variable with parameters (0,6} and if we denote
;=3¢ &, (j=1,2,...,n), the variables %} are also normally distributed
with parameters (0,¢,) (j=1,2,...,n) which proves the necessity of the
condition D, & 0.

§ 4. Applications.
The necessity of the condition D, 0 in Theorem 7 is of a paradox
character. As a matter of fact, if the variables »; in (26) are given, the

variables &, are completely determined thereby, provided that D, 4= 0; why
do we need also D, 4=07? The answer is clear: if we choose two different

1) This lemma has been kindiy suggested to me by Dr. I. ViNcze,
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sets of random variables (»,) and (7)), %, and %’ having both the same d. f
G;(x) (j—1,2,...,n) we obtain in both case a definite set of variables
(.) resp. (E) but the d. f. of § and that of & may be different if D, <40
is not supposed.

This rather curious phenomenon has interesting practical consequences.
Let us consider for instance the weighing problem of HOTELLING.'®) HOTELLING
has shown that under suitable conditions, the weights of n individual objects
may be determined more accurately by weighing the objects in combination
(by a chemical balance for instance putting some of the objects in the first
pan, and the others in the second pan) rather than weighing each one
separately. To such a weighing design there corresponds a matrix (c;) where
¢; =+ 1. Especially HOTELLING found that the most usefull experimental
design corresponds to HADAMARD matrices in case for the given number n of
objects suh a matrix exists.'®) Theorem 7 shows, that if we are interested
in determining the distribution according to their weights (or lengths, resis-
tances, etc.) of n classes of objects (instead of n individual objects) caution
is necessary: in fact only such matrices (c;) can be applied for wich
D,=|c%| 0. This condition excludes for instance all matrices in which
¢, =1, thus especially the HADAMARD matrices mentioned above.

The results of the present paper have besides obvious applications in
mathematical statistics also interes ing applications in number theory and the
theory of sets, which will be published elsewhere.
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