On the solution of some special linear congruences.

By G. Szász in Szeged.

In this paper letters A, B, M, a, b, m, n denote positive integers; $\left(\frac{B}{A}\right)_{M}$ means the least positive integer solution of the congruence

$$(1) Ax = B \pmod{M}.$$

This congruence may always be reduced to the form

$$ax \equiv b \pmod{m}$$
,

where 0 < b < a, (a, b) = 1. If (1) has any solution, then (a, b) = 1 implies (a, m) = 1. For such congruences we shall prove the following

Theorem 1. If 0 < b < a. (a, b) = 1, $m \equiv n \pmod{a}$, then

(2a)
$$\frac{a\left(\frac{b}{a}\right)_m - b}{m} = \frac{a\left(\frac{b}{a}\right)_n - b}{n},$$

i. e., if b is fixed,

$$\overline{m} = \frac{a\left(\frac{b}{a}\right)_m - b}{m}$$

is an invariant of the residue class m (mod a).

Proof. (2b) implies

(2c)
$$m\,\overline{m} = a\left(\frac{b}{a}\right)_m - b;$$

hence

$$m\bar{m} \equiv -b \pmod{a},$$

where (a, m) = 1; thus \overline{m} belongs to a determined residue class mod a. It is obvious that \overline{m} is a positive integer < a; consequently, \overline{m} is the least positive solution of (3).

From (3) we infer also that $(a, \overline{m}) | b$. As (a, b) = 1, we have $(a, \overline{m}) = 1$: \overline{m} belongs to the reduced system of residues mod a.

Corollary. A simple rearrangement of (2a) gives

$$m\left(\frac{b}{a}\right)_n - n\left(\frac{b}{a}\right)_m = (m-n)\frac{b}{a}$$
.

This formula gives a method to determine the least positive solution of the congruences by reduction to other congruences with smaller modules. (An other method by use of continued fractions is well-known.)

Consider now the \overline{m} defined by (2b). We prove

Theorem 2. If 0 < b < a, $(a \ b) = 1$,

$$\overline{m} = \frac{a\left(\frac{b}{a}\right)_m - b}{m},$$

then the mapping $m \to \overline{m}$ for m < a is a permutation P_b of the reduced system of residues mod a, for which $P_b^2 = I$. Permutat ons P_b generated by different b's are different.

Proof From the conditions of theorem 2 and from the proof of theorem 1 it follows that

$$0 < m, \overline{m} < a$$

and

$$(a m) = (a, \overline{m}) = 1$$

If m < a, we get from (3) also that $m \rightarrow \overline{m}$ is an one-to-one mapping (i. e. a permutation) of the reduced system of residues mod a.

Clearly, $P_b = P_{b'}$ if and only if b = b' (this follows from (3), because b, b' < a). From (2c) we get first

$$a\left(\frac{b}{a}\right)_{m} \equiv b \pmod{\bar{m}};$$

next, as $m, \overline{m} < a$,

$$\left(\frac{b}{a}\right)_m < \overline{m}$$
.

These results mean that $\left(\frac{b}{a}\right)_m = \left(\frac{b}{a}\right)_{\vec{m}}$, i. e. if

$$P_b(m) = \overline{m}$$

then we have also

$$P_h(\overline{m}) = m.$$

But this is equivalent to $P_b^2 = I$.

Remark. It is possible that the set of all P_b forms a group. If it is so, then we have $P_b = I$ for some b_0 ; choosing m = 1 we obtain $\overline{m} = a - b_0$. Consequently we have $b_0 = a - 1$.

On the other hand, $P_{bo} = I$ means that $\overline{m} = m$ and it follows from (3) that

$$m^2 \equiv -b_0 \pmod{a}$$
;

¹⁾ I is the identical permutation.

hence

$$m^2 \equiv 1 \pmod{a}$$

for all m subjected only to the condition (a, m) = 1. The number of all such m is $\varphi(a)$, where $\varphi(a)$ denotes EULER's φ -function. If $\varkappa(a)$ denotes the number of solutions of (5), then we must have $\varkappa(a) = \varphi(a)$. It is easy to verify that this condition is satisfied only if α is a divisor of 24.

Conversely, it turns out by direct computation that for each such value of a, the set of permutations P_b forms a group.

(Received May 19, 1950.)