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Group-rings as =-algebras.
By I N. HERSTEIN in Lawrence, U. S. A.

We consider the group-ring of a finite group over the field of complex
numbers. Although the results we obtain are not new; in fact are very well-
known, we believe our approach might be of some interest. The method we
use depends almost entirely on the construction of an adjoint in the group-
ring. Tne definition of this adjoint is fairly natural, and it leads us to some
of the desired results both quickly and easily.

Let G be a finite group of order n, and let 1=_g¢,.8,,...,2, be the
elements of G. By the group-ring, I, of G over the the complex numbers

K, we mean, the set of all formal sums Zl.-g,v where 4,€K and g,€G and

where :
Z" = Z wig: if and only if 4;=u; for each i.
o Zleg.+2#sgi=2(3-a+m)ge-
3. (Yi g)( 'uigj) = 3 Jiu;g:g; and where g; gy is calculated in G.

By ihese dehmtlons it 1s easlly verified that I' is a finite-dimensional
algebra over K.

In I' we define an adjoint Opﬂrauon, , in the following manner:

It A= 2, githen A*= D'1,g7" where 1 is the complex conjugate of .

From the definition of the * and the operations of addition and multi-
plication in I" it follows directly that

Theorem 1. For all A,B<I'\ A, uck

1. A**=A 3

2. (AA+uA)*=7iA*+uB*

3. (tAB)*=B* A"
Suppose that A= > i, g, and B— > g Hence A*= > 1gi' and
BY = Zﬁ.gr_l Thus

AA*+ BB* =2 (|11 + |l + 2 hdigigit + 2 i g:gi
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Consequently AA*+4 BB*=0 only if Z(H.-l'-{-lm ?)=0; that is only if
each 4;=u;=0. So we have
Theorem 2. If A,B<¢I then AA*+ BB*=0 if and only if A=B=-0.
Since I' is a finite-dimensional algebra over K, A€I' is regular (that
is possesses a multiplicative inverse) if and only if A is not a divisor of zero.
Suppose for some A in I' and some real A€ K, 20 that there exists a B in
I' such that (AA*+44?)B=0 Hence
B*(AA*+2*)B=(B*A)(B*A)*+(AB*) (AB*)*=0;
thus by theorem 2 AB*=0 and since 4 50, it follows that B* =0, and
so B=0. Consequently for all A¢I’ and A13+0€K,AA*+4|A|* is not a
divisor of zero, and so

Theorem 3. For all 240 in K and A€¢I', AA*+|A|* is regular.

As an immediate consequence of theorem 2 we can also obtain the very
well-known and important result that I" is a semi-simple algebra; that is
that I" has no non-zero nilpotent left-ideals. To prove this we first prove
that if A is self-adjoint, (i.e. A= A*), then A is nilpotent only if A=0.
Let A be self-adjoint and different from zero; thus A*—=A*A 40, by
theorem 2 (A*)*=A*A*=A*$0, and so A*$0. Similarly A*50 for all
integers n, and so A is not nilpotent. Suppose that / is a nilpotent left-
ideal, and A isin /; thus A*A isin / and so is nilpotent. But A*4A —=(A*A)*%
whence A*A=0. Thus A=0 and [/ is zero ideal, and I' is semi-simple.
Thus we have proved

Theorem 4. I' is a semi-simple algebra.

Let / be a minimal left-ideal of I. As is well known for any semi-
simple algebra, /—1T'e where e?—e is an idempotent. It is also easily shown
that if I'e is a minimal left-ideal of I' then el'e is a division ring (skew-
field); since eI'e contains the field Ke which is isomorphic to the complex
numbers K, and is finite-dimensional over Ke,el'e— Ke; that is for all
AcT'eAe—=2A,e where A,€K.e*e is in | and ee*e—4e, where 1¢K. We
claim that 2 is real and different from zero. For

0 (e*e)?=—e*ee*e —ie*e— (ee*e)*e—(Ae)*e —ie*e.

So =240, and we have proved our contention.
*®
Let ¢'=-£1i. Since 4 is real (e’)*=e’. Also

- * *5 .
(€)= cze eze = ele -

From this we obtain

Theorem 5. Every minimal left-ideal of I' can be generated by a self-
adjoint idempotent.
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We suppose that [=1TIe,e*—e, is a minimal left~ideal of I Thus
I is a finite-dimensional vector space over K. In [/ we will now define an
“inner product” so that / becomes a unitary space over K.1)

Suppose that a,b€l=1TIe, | a minimal left-ideal. We define I(a,b)=
—eb*ae=»1,e where 1,€K. We define the inner product of a and b,
which we denote by (a.b), by (a,b)=4,, For this inner product we prove:

1. (a,b)=(b,a).
For I(a,b)=eb*ae—=(ea*be *=(2,e)*=A4,e=1,e, so from the definition
of the inner product we obtain that (a,b)=(b,a .

2. (F’a"l' (l)b,C)—‘:‘-“—ﬂ(a, C)+(0(b,€).
For I(pa + wb,c) —ec*(pa+ wb)e—pnec*ae 4+ wec*be
= ul(a,c)+wi(b,c).
Thus (ua+ b ¢)=u(a ¢)+ w(b,c).

3. (a,a) =0; (a,a)=0 if and only if a=0.

From 1. (a,a)=(a,a), and so (a,a) is real. We next show that if
a+0, (aa)+0. Since acl, ae=a. Thus I(a,a)=ea*ae—=(ae;*(ae)=
=a*a 4 0 if a & 0; this implies (a,a)=0 only if a=0. We still have left
to show that (a,a) is positive. Suppose that /(a,a) —ea*ae— — w'e where
w is real. Then (ae)*(ae)+ (we)*(we)==0, whence @=0 and a=0.

So we have shown that our inner product is an inner product in the
sense of HALMOS') and that [ is a unitary space. This is

Theorem 8. Every minimal left-ideal of I' is a unitary vector space over K.
Since I' is the vector-space direct sum of its minimal left-ideals, each
of which is a unitary space:

Theorem 7. I' is a unitary space over K.

Since I' is an algebra over K, every A€ I’ acts as a linear transformation
on the minimal left-ideal /—TI'e, e —=e* The usual definition of the adjoint
of a linear transformation A on a unitary space is by: (a,A*b)=(Aa,b) for
all a,bel. We show that our definition is consistent with this. For

I(Aa,b) —=eb*Aae—e(A*b)*ae—1(a,A*b) and so (Aa,b)—(a,A*b).

We say a linear transformation on a unitary space is a unitary trans-
formation if (Aa,Aa)=(a,a) for all a in the space. Now

I(ga,gb)—=e(gb)*gae—=eb*ggae for all g€G, a,b¢ I'e. Thatis,
I(ga,gb)=1(a,b) for all g€ G, a,b¢€I'e, whence (ga,gb)=—(a,b).

1) For these concepts see: P. P. HaLuos, Finite-dimensional vector spaces (Prince-
ton, 1948.).
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So every group element acts as a unitary transformation on the minimal
left-ideals of I'. This enables us to prove the classic theorem

Theorem 8. Every irreducible representation of a finite group, taken
in the field of complex numbers, is equivalent to a unitary representation.?)

Every irreducible representation of G can be taken so as to have a
minimal left-ideal of I" as representation space. Since every group element
acts on the minimal left-ideals of I" as a unitary transformation, theorem 8
is proved.

(Received June 12, 1950.)

)  similar statement follows immediately for all representations from Theorem 8.



