Group-rings as *-algebras.

By I N. HERSTEIN in Lawrence, U. S. A.

We consider the group-ring of a finite group over the field of complex numbers. Although the results we obtain are not new; in fact are very well-known, we believe our approach might be of some interest. The method we use depends almost entirely on the construction of an adjoint in the group-ring. The definition of this adjoint is fairly natural, and it leads us to some of the desired results both quickly and easily.

Let G be a finite group of order n, and let $1 = g_1, g_2, \ldots, g_n$ be the elements of G. By the group-ring, Γ , of G over the the complex numbers K, we mean the set of all formal sums $\sum_i \lambda_i g_i$ where $\lambda_i \in K$ and $g_i \in G$ and where:

1.
$$\sum_{i} \lambda_{i} g_{i} = \sum_{i} \mu_{i} g_{i}$$
 if and only if $\lambda_{i} = \mu_{i}$ for each i.

2.
$$\sum_{i} \lambda_{i} g_{i} + \sum_{i} \mu_{i} g_{i} = \sum_{i} (\lambda_{i} + \mu_{i}) g_{i}.$$

3.
$$(\sum_{i} \lambda_{i} g_{i})(\sum_{j} \mu_{j} g_{j}) = \sum_{i,j} \lambda_{i} \mu_{j} g_{i} g_{j}$$
 and where $g_{i} g_{j}$ is calculated in G .

By these definitions it is easily verified that Γ is a finite-dimensional algebra over K.

In Γ we define an adjoint operation,*, in the following manner:

If
$$A = \sum \lambda_i g_i$$
 then $A^* = \sum \overline{\lambda}_i g_i^{-1}$ where $\overline{\lambda}_i$ is the complex conjugate of λ_i .

From the definition of the * and the operations of addition and multiplication in Γ it follows directly that

Theorem 1. For all $A, B \in \Gamma, \lambda, \mu \in K$

1.
$$A^{**} = A$$

2.
$$(\lambda A + \mu A)^* = \lambda A^* + \bar{\mu} B^*$$

3.
$$(AB)^* = B^*A^*$$
.

Suppose that $A=\sum \lambda_i g_i$ and $B=\sum \mu_i g_i$ Hence $A^*=\sum \vec{\lambda_i} g_i^{-1}$ and $B^*=\sum \bar{\mu_i} g_i^{-1}$ Thus

$$AA^* + BB^* = \sum_{i} (|\lambda_i|^2 + |\mu_i|^2) + \sum_{i+j} \lambda_i \bar{\lambda}_j g_i g_j^{-1} + \sum_{i+j} \mu_i \bar{\mu}_j g_i g_j^{-1}.$$

Consequently $AA^* + BB^* = 0$ only if $\sum_{i} (|\lambda_i|^2 + |\mu_i|^2) = 0$; that is only if each $\lambda_i = \mu_i = 0$. So we have

Theorem 2. If $A, B \in \Gamma$ then $AA^* + BB^* = 0$ if and only if A = B = 0.

Since Γ is a finite-dimensional algebra over K, $A \in \Gamma$ is regular (that is possesses a multiplicative inverse) if and only if A is not a divisor of zero. Suppose for some A in Γ and some real $\lambda \in K$, $\lambda \neq 0$ that there exists a B in Γ such that $(AA^* + \lambda^2)B = 0$ Hence

 $B^*(AA^*+\lambda^2)B=(B^*A)(B^*A)^*+(\lambda B^*)(\lambda B^*)^*=0;$ thus by theorem 2 $\lambda B^*=0$ and since $\lambda \neq 0$, it follows that $B^*=0$, and so B=0. Consequently for all $A\in \Gamma$ and $\lambda \neq 0\in K$, $AA^*+|\lambda|^2$ is not a divisor of zero, and so

Theorem 3. For all $\lambda \neq 0$ in K and $A \in \Gamma$, $AA^* + |\lambda|^2$ is regular. As an immediate consequence of theorem 2 we can also obtain the very well-known and important result that Γ is a semi-simple algebra; that is that Γ has no non-zero nilpotent left-ideals. To prove this we first prove that if A is self-adjoint, (i. e. $A = A^*$), then A is nilpotent only if A = 0. Let A be self-adjoint and different from zero; thus $A^2 = A^*A \neq 0$, by theorem $2(A^2)^* = A^*A^* = A^2 \neq 0$, and so $A^4 \neq 0$. Similarly $A^{2^n} \neq 0$ for all integers n, and so A is not nilpotent. Suppose that I is a nilpotent left-ideal, and A is in I; thus A^*A is in I and so is nilpotent. But $A^*A = (A^*A)^*$, whence $A^*A = 0$. Thus A = 0 and I is zero ideal, and Γ is semi-simple. Thus we have proved

Theorem 4. I is a semi-simple algebra.

Let l be a minimal left-ideal of Γ . As is well known for any semi-simple algebra, l=Te where $e^2=e$ is an idempotent. It is also easily shown that if Γe is a minimal left-ideal of Γ then $e\Gamma e$ is a division ring (skew-field); since $e\Gamma e$ contains the field Ke which is isomorphic to the complex numbers K, and is finite-dimensional over $Ke, e\Gamma e=Ke$; that is for all $A \in \Gamma, eAe = \lambda_A e$ where $\lambda_A \in K. e^*e$ is in l and $ee^*e = \lambda_e$, where $\lambda \in K$. We claim that λ is real and different from zero. For

$$0 + (e^*e)^2 = e^*ee^*e = \lambda e^*e = (ee^*e)^*e = (\lambda e)^*e = \bar{\lambda}e^*e.$$

So $\lambda = \bar{\lambda} \neq 0$, and we have proved our contention.

Let
$$e' = \frac{e^*e}{\lambda}$$
. Since λ is real $(e')^* = e'$. Also

$$(e')^2 = \frac{e^*e}{1} = \frac{e^*e}{1} = \frac{e^*e}{1} = e'.$$

From this we obtain

Theorem 5. Every minimal left-ideal of Γ can be generated by a self-adjoint idempotent.

We suppose that $l = \Gamma e, e^* = e$, is a minimal left-ideal of Γ . Thus l is a finite-dimensional vector space over K. In l we will now define an "inner product" so that l becomes a unitary space over K.¹)

Suppose that $a, b \in l = \Gamma e$, l a minimal left-ideal. We define $I(a, b) = eb^*ae = \lambda_{ab}e$ where $\lambda_{ab} \in K$. We define the inner product of a and b, which we denote by (a, b), by $(a, b) = \lambda_{ab}$ For this inner product we prove:

1.
$$(a,b) = (\overline{b,a})$$
.

For $I(a,b) = eb^*ae = (ea^*be^* = (\lambda_{ba}e)^* = \overline{\lambda}_{ba}e = \lambda_{ab}e$, so from the definition of the inner product we obtain that $(a,b) = (\overline{b},\overline{a})$.

2.
$$(\mu a + \omega b, c) = \mu(a, c) + \omega(b, c)$$
.

For $I(\mu a + \omega b, c) = ec^*(\mu a + \omega b)e = \mu ec^*ae + \omega ec^*be$ = $\mu I(a, c) + \omega I(b, c)$.

Thus $(\mu a + \omega b c) = \mu(a c) + \omega(b,c)$.

3.
$$(a,a) \ge 0$$
; $(a,a) = 0$ if and only if $a = 0$.

From 1. $(a,a) = (\overline{a,a})$, and so (a,a) is real. We next show that if $a \neq 0$, $(a,a) \neq 0$. Since $a \in l$, ae = a. Thus $I(a,a) = ea^*ae = (ae)^*(ae) = a^*a \neq 0$ if $a \neq 0$; this implies (a,a) = 0 only if a = 0. We still have left to show that (a,a) is positive. Suppose that $I(a,a) = ea^*ae = -\omega^2e$ where ω is real. Then $(ae)^*(ae) + (\omega e)^*(\omega e) = 0$, whence $\omega = 0$ and a = 0.

So we have shown that our inner product is an inner product in the sense of $HALMOS^1$) and that l is a unitary space. This is

Theorem 6. Every minimal left-ideal of Γ is a unitary vector space over K. Since Γ is the vector-space direct sum of its minimal left-ideals, each of which is a unitary space:

Theorem 7. Γ is a unitary space over K.

Since Γ is an algebra over K, every $A \in \Gamma$ acts as a linear transformation on the minimal left-ideal $l = \Gamma e$, $e = e^*$. The usual definition of the adjoint of a linear transformation A on a unitary space is by: $(a, A^*b) = (Aa, b)$ for all $a, b \in l$. We show that our definition is consistent with this. For

$$I(Aa,b) = eb*Aae = e(A*b)*ae = I(a,A*b)$$
 and so $(Aa,b) = (a,A*b)$.

We say a linear transformation on a unitary space is a unitary transformation if (Aa,Aa) = (a,a) for all a in the space. Now

$$I(ga,gb) = e(gb)*gae = eb*g^{-1}gae$$
 for all $g \in G$, $a,b \in \Gamma e$. That is, $I(ga,gb) = I(a,b)$ for all $g \in G$, $a,b \in \Gamma e$, whence $(ga,gb) = (a,b)$.

¹⁾ For these concepts see: P. P. Halmos, Finite-dimensional vector spaces (Princeton, 1948.).

So every group element acts as a unitary transformation on the minimal left-ideals of Γ . This enables us to prove the classic theorem

Theorem 8. Every irreducible representation of a finite group, taken in the field of complex numbers, is equivalent to a unitary representation.²)

Every irreducible representation of G can be taken so as to have a minimal left-ideal of Γ as representation space. Since every group element acts on the minimal left-ideals of Γ as a unitary transformation, theorem 8 is proved.

(Received June 12, 1950.)

²⁾ similar statement follows immediately for all representations from Theorem 8.