Notes on the foundations of lattice theory.

By DAVID ELLIS in Florida (U.S.A.)*)

1. Introduction.

A *lattice* may be defined as a set closed under two binary single-valued operations. $a \lor b$ and $a \land b$, which satisfies the following postulates¹):

1. Double Commutativity.

$$a \lor b = b \lor a \land a \land b = b \land a; \qquad (\forall a, b)^2).$$

2. Double Associativity.

$$a \lor (b \lor c) = (a \lor b) \lor c \land a \land (b \land c) = (a \land b) \land c; \quad (\forall a, b, c).$$

3. Alternation.

$$a \lor b = a \cdot \sim \cdot a \land b = b;$$
 $(\forall a, b).$

4. Double Idempotency.

$$a \lor a = a \land a = a;$$
 $(\forall a).$

A lattice is called distributive if it also satisfies the postulate of

5. Double Distributivity.

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c) \wedge a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c); \qquad (\forall a, b, c).$$

^{*} Presented to the Annual Mee ing of the American Mathematical Society, Christmas, 1950.

¹⁾ This list of postulates is logically equivalent to any of the usual definitions of lattice either as an abstract algebra or as a partially ordered set with extrema for pairs of elements.

²⁾ We employ the following logical symbols, most of which are due to E. H. MOORE in this paper:

is read "there exist(s)"

[∀] is read "for all"

is read "such that"

^{· &}gt; · is read "implies"

^{· ~ ·} is read "if and on y if"

A is read "and"

V is read "or (conjunctive)"

is read "is an element of".

206 D. Ellis

However, KARL MENGER [3]³) has shown that on the basis of 1.—4. the postulate 5. is implied by the weaker

6. Single Distributivity.

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c); \qquad (\forall a, b, c)$$

$$\forall a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c); \qquad (\forall a, b, c).$$

Hence, distributive lattices may be characterized by postulates 1.-4. and 6.

Other lists of postulates characterizing distributive lattices have been given by G. D. BIRKOFF and GARRETT BIRKHOFF [1] in terms of the lattice operations for those distributive lattices possessing "last" elements, and by S. A. KISS and GARRETT BIRKHOFF [2] in terms of the ternary lattice operation for those distributive lattices possessing "first" and "last" elements.

In a recent discussion between Professor Roy UTZ and the author the question was raised: What alteration, if any, would be effected by weakening idempotency in the lattice postulates to a condition of finite potency (defined shortly)? In this paper we give an answer to this question in the distributive case and also obtain a new list of postulates, in terms of the lattice operations, for distributive lattices which does not contain idempotency explicitly.

We shall refer to a system satisfying the postulates 1.—3. (that is, satisfying the lattice postulates except for idempotency) as a pseudo-lattice and say that it is a distributive pseudo-lattice if postulate 5. is also satisfied⁴). Greek letters refer to natural integers throughout the paper and the other elements under discussion are to be construed as elements of a distributive pseudo-lattice. An element a is called α -potent for \vee (for \wedge) provided $\vee_{\alpha+1} a = a \ (\wedge_{\alpha+1} a = a)^5$). We shall say that an element a is finitely potent if there is an α so that a is α -potent for \vee or for \wedge .

2. Idempotency.

Lemma 1. If a is a-potent for \vee then $\vee_3 a = \vee_2 a$.

Proof. From $a \lor (\lor_{\alpha} a) = a$ we obtain, by alternation, $a \land (\lor_{\alpha} a) = \lor_{\alpha} a$. Then $a \lor (a \land (\lor_{\alpha} a)) = (\lor_{\alpha} a) \lor a = a$. But $a \lor (a \land (\lor_{\alpha} a)) = (\lor_{2} a) \land ((\lor_{\alpha} a) \lor a) = (\lor_{2} a) \land a$, by distributivity. Hence, $(\lor_{2} a) \land a = a$ and $\lor_{3} a = (\lor_{2} a) \lor a = \lor_{2} a$, by alternation.

The postulates 1.—3. and 5. obviously form a selfdual set (with respect to the interchange of \vee and \wedge) so that Lemma 1 is valid when \vee is replaced by \wedge .

³⁾ Numbers in parentheses refer to the list of references concluding the paper.

⁴⁾ Without the assumption of idempotency (that is, on the basis of 1.-3. alone)
6. does not, in general, imply 5. See the example given in the Remark of Part 2 of the paper-

⁵⁾ $\wedge \alpha x$ is an abbreviation for $x \wedge x \wedge ... \wedge x$ with α "factors". $\vee \alpha x$ has the obvious similar meaning.

Lemma 2. If a is finitely potent then $\vee_2 a = \wedge_2 a$.

Proof. For convenience suppose that a is α -potent for \vee . Then $\vee_3 a = \vee_2 a$, by Lemma 1. By alternation, $(\vee_2 a) \wedge a = a$. But $(\vee_2 a) \wedge a = a \vee_2 (\wedge_2 a) = a$. Then, by direct computation, $\wedge_3 a - \wedge_3 (\vee_2 (\wedge_2 a)) = \vee_8 (\wedge_6 a) = (\wedge_5 a) \wedge (\vee_8 a) = (\wedge_5 a) \wedge (\vee_2 a)^6 - (\wedge_4 a) \wedge (\vee_2 (\wedge_2 a)) - (\wedge_4 a) \wedge a = \wedge_5 a$. Hence, $\wedge_3 a = \wedge_5 a = (\wedge_3 a) \wedge (\wedge_2 a)$ and, by alternation, $(\wedge_3 a) \vee (\wedge_2 a) = \wedge_2 a$. Then $a \wedge ((\wedge_2 a) \vee a) = (\vee_2 (\wedge_2 a)) \wedge ((\wedge_2 a) \vee a) = (\vee_2 (\wedge_4 a)) \vee (\vee_2 (\wedge_2 a)) = \wedge_2 a$, by distributivity. For convenience in later reference we label the last equality

$$(\vee_2(\wedge_4 a)) \vee (\vee_2(\wedge_2 a)) = \wedge_2 a.$$

Now, by direct computation, $\wedge_2 a = \vee_4 (\wedge_4 a)$ since $a = \vee_2 (\wedge_2 a)$. But $\vee_4 (\wedge_4 a) = (\wedge_3 a) \wedge (\vee_4 a) = (\wedge_5 a) \wedge (\vee_4 a) = \vee_4 (\wedge_6 a) = (\wedge_2 a) \wedge (\vee_4 (\wedge_4 a)) = (\wedge_2 a) \wedge (\wedge_2 a) = \wedge_4 a$. Hence, $\wedge_2 a = \wedge_4 a$ and, from (*),

$$\wedge_2 a = (\vee_2 (\wedge_2 a)) \vee (\vee_2 (\wedge_2 a)) = \vee_2 a.$$

The proof proceeds dually if α is α -potent for \wedge .

Theorem 1. If a is finitely potent with respect to either operation, \vee or \wedge , then a is idempotent with respect to each operation.

Proof. In view of Lemma 2, it suffices to show that $\vee_2 a = a \vee \wedge_2 a = a$. We suppose again, for convenience, that a is α -potent for \vee since the proof will merely be dualized in the contrary case. From Lemma 2, $\vee_2 a = \wedge_2 a$ so that $\vee_2 (\wedge_2 a) = \vee_4 a = \vee_2 a^6$. However, $\vee_2 (\wedge_2 a) = a$ (as in the proof of Lemma 2) so that $\vee_2 a = a$

Remark. The following example shows that Theorem 1 is not, in general, valid if distributivity is ommitted. Let P be the pseudo-lattice with elements a, b, c and with operation tables

For \vee , b is idempotent while a and c are 3-potent. For \wedge , b is again idempotent while a and c have no finite potencies. It should also be noted that this example shows that postulate 6. does not imply 5. on the basis of 1.—3. alone, since in this example, \wedge distributes over \vee , but \vee does not distribute over \wedge .

⁶⁾ From $\bigvee_3 a = \bigvee_2 a$ we obtain $\bigvee_\alpha a = \bigvee_2 a$ for $\alpha \ge 2$.

3. A new list of postulates for distributive lattices.

The necessity part of the following theorem being obvious and the sufficiency part being an immediate consequence of Theorem 1, we have finally:

Theorem 2. Let P be a set closed under two binary single-valued operations, $a \lor b$ and $a \land b$. A necessary and sufficient condition that P form a distributive lattice under $a \lor b$ and $a \land b$ is that the following conditions be satisfied:

1. Double Commutativity.

$$a \lor b = b \lor a \land a \land b = b \land a; \qquad (\forall a, b)$$

2 Double Associativity.

3. Alternation.

$$a \lor b = a \cdot \sim \cdot a \land b = b;$$
 $(\forall a, b).$

4. Finite Potency

$$a \in P \supset \exists \alpha \ (a \text{ natural integer}) \ni \bigvee_{\alpha+1} a = a \lor \bigwedge_{\alpha+1} a = a.$$

5. Double Distributivity.

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)^{\wedge}$$

$$a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c); \qquad (\forall a, b, c).$$

References.

- [1] G. D. BIRKHOFF and GARRETT BIRKHOFF, Distributive postulates for systems like Boolean algebras. Trans. Am. Math. Soc., 60 (1946), 3-11.
- [2] S. A. Kiss and Garrett Birkhoff, A ternary operation in distributive lattices. Bull. Am. Math. Soc., 53 (1947), 749-752.
- [3] KARL MENGER, New foundations of projective and affine geometry. Annals of Math (II. s.), 37 (1936), 356-482.

(Received July 19, 1950.)