Notes on the foundations of lattice theory.
By DAvID ELLIS in Florida (U.S. A)*)

1. Introduction.

A lattice may be defined as a set closed under two binary single-valued
operations. a\VVb and aAb, which satisfies the following postulates?):
1. Double Commutativity.

avb=bvaranb=0bAga; (va, b)?).
2. Double Associativity.
aVvV(bve)= (avb)Veran(bAc)=(aAb) Ac; (va,b,c).
3. Alternation.
avVb=a -~-aNb=b; (va, b).
4. Double Idempotency.
avVa=aNa=a; (va).
A lattice is called distributive if it also satisfies the postulate of
5. Double Distributivity.

aA(bve)y=(@Ab)V(@anc’
av(bAc =(avb) A(aVe); (va, b, c).

* Presented to the Annual Mee ing of the American Mathematical Society, Christ-
mas, 1950,

1) This list of postulates is logically equivalent to any of the usual definitions of
lattice either as an abstract algebra or as a partially ordered set with extrema for pairs
of elements.

%) We employ the following logical symbols, most of which are due to E. H. Moore
in this paper:

3 is read “there exist(s)”

is read “for all”

3 is read “such that”

oS- is read “implies”

-~ is read “if and ony if”

A is read “and”

Vv is read “or (conjunctive)”

€ is read “is an element of”.
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However, KARL MENGER [3]®) has shown that on the basis of 1.—4. the
postulate 5. is implied by the weaker

6. Single Distributivity.

aA(bve)=(@Ab)V(aAd); (va, b, c)
Vav (bAc)=(aVb) A(aVc); (va, b, c).

Hence, distributive lattices may be characterized by postulates 1.—4. and 6.
Other lists of postulates characterizing distributive laitices have been
given by G. D. BIRkOFF and GARRETT BIRKHOFF [1] in terms of the lattice
operations for those distributive lattices possessing “last” elements, and by
S. A. Kiss and GARRETT BIRKHOFF [2] in terms of the ternary lattice opera-
tion for those distributive lattices possessing “first” and “last” elements.

In a recent discussion between Professor Roy UTz and the author the
question was raised: What alteration, if any, would be effected by weakening
idempotency in the lattice postulates to a condition of finite potency (defined
shortly)? In this paper we give an answer to this question in the distributive
case and also obtain a new list of postulates, in terms of the lattice opera-
tions, for distributive lattices which does not contain idempotency explicitly.

We shall refer to a system satisfying the postulates 1.—3. (that is,
satisfying the lattice postulates except for idempotency) as a pseudo-lattice
and say that it is a disfributive pseudo-lattice if postulate 5. is also satisfied*).
Greek letters refer to natural integers throughout the paper and the other
elements under discussion are to be construed as elements of a distributive
pseudo-lattice. An element a is called a-potent for VvV (for A) provided
V1@ =a(Aani@=a)®). We shall say that an element a is finitely potent
if there is an a so that a is a-potent for \ or for A.

2. Idempotency.

Lemma 1. If a is a-potent for V then Vv a= V,a.

Proof. From aV (V.a)=a we obtain, by alternation, a A (V.a) = V.a.
ThenaV(aA(Vaa))=(Vaa)Va=a. ButaV (@A (Vaa))=(/30) A((Vea)Va)=
== (V,a) Aa, by distributivity. Hence, (V,2) Aa=a and V;a=(V.a) Va=V.a,
by alternation.

The postulates 1.—3. and 5. obviously form a selfdual set (with respect
to the interchange of Vv and A) so that Lemma 1 is valid when V is re-
placed by A.

3) Numbers in parentheses refer to the list of references concluding the paper.

%) Without the assumption of idempotency (that is, on the basis of 1.- 3. alone)
6. does not, in general, imply 5. See the example given in the Remark of Part 2 of the paper-

5) Aeax is an abbreviation for x A x /\ ... A x with « “factors”. \/«x has the obvious
similar meaning.
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Lemma 2. If a is finitely potent then \,a = A,a.

Proof. For convenience suppose that a is a-potent for V. Then
Vsa==V,a, by Lemma 1. By alternation, (V,a@) Aa=a. But (V,a)Aa==
=Vy(Asa)=a. Then, by direct computation, Aza— A3(V3(A:2))= Vs(Asa) —
=(Asa) A (Vsa) = (Asa) A (V10) ®) — (Asa) A (Va(A20)) — (A@) Aa= Asa.
Hence, A;a= A,a=(A;a) A (A;a) and, by alternation, (A;a)V (A.a) = A,a.
Then a A ((A:@) Va) = (Va(A2a)) A ((A20) V@) = (V2 (A.0)) V (V2 (A:0)) =
= Aq@a, by distributivity. For convenience in later reference we label the last
equality
™ (Va(A@)) V (V2 (A20)) = Aqa.

Now, by direct computation, A,a=V,(A.a) since a=V,(A;a). But
Vi(Aa) = (Asa) A (Via) = (Aza) A (V@)= V.(Nea) =(N:20) A (V. (Ae@)=
=(A:a) A (A2a)= A.a. Hence, A,a=— A.a and, from (¥),

M@= (V1 (A:1a)) V (V1(A:0)) = V,a.
The proof proceeds dually if a is a-potent for A.

Theorem 1. If a is finitely potent with respect to either operation,
V or A, then a is idempotent with respect to each operation.

Proof. In view of L.mma 2, it suffices to show that v,a=—aV n,a=a,
We suppose again, for convenience, that a is a-potent for \/ since the proof
will merely be dualized in the contrary case. From Lemma 2, V.,a= A,@
80 that Vv,(A.a)=Vv.a=V,a®. However, V,(n,a)=a (as in the proof
of Lemma 2) so that v,a=a

Remark. The following example shows that Theorem 1 is not, in

general, valid if distributivity is ommitted. Let P be the pseudo-lattice with
elements a, b, ¢ and with operation tables

via b c Ala b ¢
gl a.P alb b b
bla b ¢ 810 5.8
A S - el BB

For v, b is idempotent while a and ¢ are 3-potent. For A, b is again
idempotent while a and ¢ have no finite potencies. It should also be noted
that this example shows that postulate 6. does not imply 5. on the basis of
1.—3. alone, since in this example, A distributes over Vv, but v does not
distribute over A.

§) From \/j;a = V/,a we obtain \V«ad =Vja for « =2.
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3. A new list of postulates for distributive lattices.

The necessity part of the following theorem being obvious and the
sufficiency part being an immediate consequence of Theorem 1, we have
finally :

Theorem 2. Let P be a set closed under iwo binary single-valued
operations, a\/ b and a N b. A necessary and sufficient condition that P form
a distributive lattice under a\v b and a A b is that the following conditions
be satisfied :

1. Double Commutativity.

avb=bvaranb=bra; (va, b)
2 Double Associativity.

av(bve)=(@vbd)vch

an(bre)=(anb)Ac; (va, b, ¢).
3. Alternation.

avb=a-~-anb=b; (va, b).
4. Finite Potency

a€P->-Ja (a natural integer); Vesna=aV Agpa=a.

5. Double Distributivity. '

anve)y=(@nb)v(@neo’

av(bnc)=(avb)A(ave); (va, b, ¢).
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