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On semigroups admitting relative inverses
and having minimal ideals.

By L. FUCHS in Budapest.

1. A. SUSCHKEWiTSCH') was the first to consider the structure of semi-
groups. He has proved that every finite semigroup S has a uniquely deter-
mined subsemigroup K, called its kernel (Kerngruppe), which decomposes
into the class-sum of disjoint isomorphic groups C,; such that?®)

k':—; A,=§Bz=§‘§' Cia, szé‘ Caz, Bz:é Cus,

z=]

where A, (B;) are isomorphic subsemigroups with the right-(left-)cancellation
law?). Later A. H. CLIFFORD*) has considered infinite semigroups admitting
relative inverses and prcved that such a semigroup is the class-sum of
mutually disjoint groups. However, about the structure of the kernel his
results®) do not give such an exhaustive information as the structure theorem
of SUSCHKEWITSCH cited above.

In the present paper we show how to extend SUSCHKEWITSCH’ results
to infinite semigroups admitting relative inverses which contain minimal
right-ideals. A simple generalization of the kernel to which our method
naturally leads is set out as Theorem 7 in section 5.

2. Let S be a semigroup, i. e.,, a system closed under an associative
operation and let S admit relative inverses in the sense of A. H. CLIFFORD

1) A. Suscugewrrsce, Uber die endlichen Gruppen ohne das Gesetz der eindeutigen
Umkehrbarkeit. Math. Ann., 99 (1928, 30—50.

) 2 denotes class-sum.

8) The kernel is, in the terminologzy of D. Rees [On semi-groups. Proc. Cambr.
Phil. Soc., 36 (1940), 387—400], a completely simple semigroup without zero, i. e, a semi-
group K such that, for given a,b in K, the equation xay=2>5 is always solvable for x
and y in K.

4) A, H. Cuirrorp, Semigroups admitting relative inverses. Ann. of Math. (Il.s.), 42
(1941), 1037—1049. For the definition of relative inverse see below 2,

5) See also A. H. Crirrorp, Semigroups containing minimal ideals. Amer. J. Math,,
70 (1948), 521—526.
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(loc. cil.*)): to each a in S there exists an element e and a relative inverse
a’ such that ea=ae=a, aa’=a’a=-¢. It is easily proved that this e is
idempotent and is uniquely determined by a, further, if a" is a relative in-
verse of a, then a—'=ea’e is also one satisfying ea-'=a'¢=a"' and a™*
is unique. When we speak about the relative inverse of a, we shall always
understand this a-'. Clearly, a is the relative inverse of a™.

A subset A of S is called a right-(left-)ideal, if®) ASCA (SACA);
A is a two-sided ideal if SAS CA. The set aS (Sa, SaS) is said to be the
principal right-(left-, {wo-sided) ideal generated by a. Since each element
has its own two-sided unit, it follows that every principal ideal contains its
generating element.

We define a subdivision of § into disjoint classes by the specification
that @ and b belong to the same class C, if, and only if, they generate the
same principal right-ideal, i. e., aS=056S. In order to discovir the structure
of C, we prove a series of lemmas.

Lemma 1. C, is a subsemigroup of S.

It is to be proved that C, contains together with a, b also ab. Suppose
a, b to belong to C,, thatis, aS=056S. We have evidently abS CaS as well
as abS—aaSO aaa'S—=aeS=aS. These inclusions imply abS=—as§,
i.e, abeC, as stated.

Lemma 2. C, admits relative inverses.

For, if e is the idempotent belonging to a and a-' is the relative inverse
of ain S, then aSDaa'S=eSDea'S=a'S and the dual inclusions
a'SDeSDaS imply that both e and a— generate the same right-ideal as a,
hence e, a'€(C,. This lemma admits of writing each principal right-ideal
with an idempotent generating element.

Lemma 3. C, is a left-right system in the sense defined by H.B. MANN?).

It is to be shown that C, contains a universal left-unit and each element
has a right-inverse with respect to this left-unit. @, 6€ C,, that is, aS=0568
implies the existence of an x€ 8 such that ax=>5b Let e be the idempotent
belonging to a; then eb—eax—ax=2>, that is to say, e and hence every
idempotent of C, is a universal left-unit for C,®). To complete the proof,
we show that an equation ax=u (@€ C,, u a left-unit in C,) is solvable
for x¢C,. Put x=a"'u, then x¢C, and aa'u=eu=u, e being a left-
unit for C,.

¢) C denotes inclusion, c denotes proper inclusion.

7) H. B. MANN, On certain systems which are almost groups. Bull. Amer. Math.
Soc., 50 (1944), 879—881. A left-right system, or, briefly a (I, r)-system, is closed under
a binary associative operation and contains a left-unit and right-inverses,

) More generally, every idempotent e of Cq is a universal left-unit for the whole
right-ideal aS=»5S.
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Lemma 4. In C, the left-cancellation law holds.

For, multiply the equation ax=ay (a,x, y€C,) by a~' on the left to
get ex=—ey, whence x=y, since the idempotent e belonging to a is a left-
unit for all the elements of C,.

From Lemmas 1—4 we conclude:

Theorem 1. A semigroup admitting relative inverses decomposes into
the class-sum of mutually disjoint (I, r)-systems C, with the left-cancellation
law, which are themselves semigroups admitting relative inverses.

Let R be any right-ideal of S. If R contains a single element a of C,,
then R contains the principal right-ideal generated by a, hence R wholly
contains C,. Thus we are led to

Theorem 2. Any right-ideal R of S splits into the class-sum of mutually
disjoint (I, r)-systems C, with the left-cancellation law.

Of course, the same holds for left-ideals L using (r, [)-system D, with
the right-cancellation law instead of (I, r)-systems.

3. A ([, r)-system C,and a (r, [)-system D, define a cross-cut E,, =ConD,.
If this is not empty, then it contains with each a also a™ and e. e being
a left-unit for C, and at the same time a right-unit for D,, e is the identity
element of E,,. E,, is plainly a group. Since a group can not have other
idempotents than its identity, it follows that E,; contains no element belonging
to an idempotent other than the identity e of E;.. On the other hand, both
C; and D, contain together with e also every element belonging to the idem-
potent . Hence every E;, which is not vacuous, consists of all elements
belonging to the same idempotent e, consequently, it coincides with one of
the groups S. defined by CLIFFORD (loc. cit. ¥)). We thus conclude that
each (/, r)-system C, [(r,!) system D.] consists of certain of the groups S..

Now the problem arises as to which groups S. belong to the same C,.
This may be settled by the idempotents: it is obvious that C, contains
together with e also all idempotents ¢’ for which ee’=¢€’ and ¢'e=e, but
only these idempotents®). Hence a (/, r)-system C, consists of a set of the
groups S. such that the idempotents e are exactly those which are left-units
for each other.

Let e be a left-unit in C, and consider the set C,e, that is, the set of
all elements of C, whose left- and right-unit is e. This set evidently coincides
with the group S. of C,. The mapping x— xe induces a homomorphism
of C; onto S., for a—ae, b— be imply ab— abe=a(eb)e=/(ae)(be).
Moreover: the groups S., S, of which C, consists are isomorphic under
the correspondence ae~+ae’ (a€C,). In fact, this is one-to-one: age is

9 If ¢,¢” are two such idempotents, then they are left-units for each other, for
e’ =e'(ee’)=(e'e)e” =ee’ =¢e" and similarly ¢'¢’ =¢',
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mapped upon aee’ —ae’ and vice versa, further, it is a homomorphism :
(ae) (be)—=abe«>abe = (ae’) (be'), since e as well as e’ are universal left-
units for C,. Hence:

Theorem 3. Each (I, r)-system C, consists of isomorphic groups §.
such that the idempotents e are left-units for each other').

4. Assume that there is a minimal right-ideal R in S. By the minimality
of R, any element of R generates R, hence R consists of one C,, say R—=C".
Let e be an idempotent belonging to R (thus R=—eS8) and consider the
principal left-ideal Se. This is also minimal. To verify this we shall show
that any principal left subideal Sf of Se equals Se (f an idempotent). Sf
has a non-vacuous intersection with R, for ef belongs to both of them;
therefore there is a group S, with the identity g in RnSf. This implies
Sg CSf CSe, and hence e is a riglit-unit for g, ge=g. On the other hand
e and g being idempotents in R=C", g is a left-unit for e, thus ge=e,
Hence we get g—e; consequently, Sf—Se and Se is a minimal left-ideal,
indeed. We have thus proved:

Theorem 4. An element generates a minimal left-ideal if and only if
it generates a minimal right-ideal.

Let {e:} be the set of idempotents contained in the minimal right-ideal
R of §, and consider the left-ideals L:==Se; generated by e;. Theorem 4
implies that all the L; are minimal. Moreover, there is no minimal left-ideal
beside these L;, for each left-ideal must have a non-void intersection with
the right-ideal R and hence also an idempotent in common with R. The
same inference shows that the right-ideals generated by the idempotents of
one of L, exhaust all minimal right-ideals R, of S. Hence it follows at once
that the class-sum K of all minimal right-ideals R, is the same as that of
all minimal left-ideals L;. It is also readily seen that K is a two-sided ideal:
the unique minimal two-sided ideal of S contained in every {wo-sided ideal
of §. K is said to be the kernel of S. The kernel has the same siructure as
in the finite case discovered by A. SUSCHKEWITSCH :

Theorem 5. If S has a minimal right-ideal, then the kernel K of S
exists. K has the following structure:

K=ZR;=ZL;=ZZS«4, R:T;sz. Lz=Zsz,

where the R, (L) are isomorphic (I, r)-systems with the left-cancellation law
[(r, I)-systems with the right-cancellation law) and Sx:= R.n L; are isomorphic
groups.

10) This corresponds to Maxn’s result (loc cit. 7)) according to which each (/, r)-
system is the direct product of a group and an idempotent (/, r)-system.
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We have to verify the isomorphisms. The fact that the groups belonging
to minimal one-sided ideals are all isomorphic is an immediate consequence
of Theorem 3. This isomorphism of the groups S.; may be extended to an
isomorphism of the right-(left-)ideals R, (L;) such that the groups S.€R and
S.€R’ correspond to each other if, and only if, they belong to the same
left-ideal Se=Se’; further, let xe¢'€ R’ correspond to x=xe€R. This cor-
respondence is then actually an isomorphism between R and R’, for if
xe«»x€ (xe€R, xe' €R’) and yf—yf (ff=/f, f?=F, yf€R, yf €R’),
then xe.-yf=xyfeS,CR and xe.yf =xyf €S, CR' are corresponding
elements. This completes the proof of the isomorphisms.

5. The above results on minimal right-ideals may be generalized to
a certain class of ideals. By the rank of a principal right-ideal aS we shall
understand 1 if aS is minimal, and n+1 if aS> 6S implies that the rank
of S is at most n, but not at most n —1 (n>1). It is immediate that by
this definition every principal right-ideal of rank n contains a principal right-
ideal for every rank <n—1, but neither another one of the same rank nor
one of a rank greater than n. The same definition applies to left-ideals.

Theorem 6. The principal right-ideal eS is of rank n if and only if
the principal left-ideal Se is of rank n.

Proof by induction on n. For n==1 this is just the statement of
Theorem 4. Let the rank n of eS be greater than 1 and suppose the asser-
tion true for ideals of a rank <n By the induction hypothesis the principal
left-ideal Se can not be of a rank less than n, consequently, there is a
principal left-ideal Sf (f an idempotent) of rank n contained in Se. Clearly,
fe=1 and hence the left-ideal Sef contains fef=—jff=/F, so that Sef=Sf.
On the other hand efS CeS and, if efS had a rank <n—1, then, by in-
duction, Sef=_S8f would have the same rank against the assumption on Sf;
hence efS is of rank n. This implies efS—=eS, ef is a left-unit for e, that
is, efe=e. But we have efe=—e(fe)=ef, consequently, ef=e and hence
Sf=8ef=_Se, as we wished to prove.

Now assuming the existence of a principal right- or left-ideal of rank n,
by the method of section 4 one gets kernels of rank n. The above discus-
sions imply

Theorem 7. Each kernel of higher rank has the same structure as
SUSCHKEWITSCH’ kernel.

The only, but basic difference belween the kernel of rank 1 and the
kernels of higher rank lies in the fact that several kernels of the same rank

> 1 may exist; moreover, in the simplest finite cases the kernels of higher
rank need not be unique!

(Received August 10, 1950.)



