On bases for the set of integers.
By N. G. DE BRruiN, Delft (Holland).

§ 1. Introduction.

A set of integers {b,,b,,b;, ...} will be called a base for the set of
all integers (shortly: a base), whenever any integer x can be expressed
uniquely in the form

(1.1) nge.-b.- (=0 or I,Zemoo).

It is not difficult to see that a base is obtained by taking b;=-+ 2! such
that both + and — occur infinitly often.

T. SzeLE conjectured that any base has the property that it contains
just one odd number, just one odd multiple of 2, just one odd multiple
of 4, etc.. This will be proved below. It follows that any base can be
rearranged in the form {d,,2d,, 2%d,,...}, where the d; are odd numbers,
The sequence [d,,d,,ds,...] shall be called a basic sequence, whenever
{d,, 2d,,2%,,...} is a base.

It seems to be very difficult to determine all basic sequences. We shall
give some necessary and some sufficient conditions for a sequence to be
basic. There is, however, one general case which can be dealt with more
or less satisfactory (§3): If the sequence [d,,d,,...] is periodic, i.e. if
di+s—d; for some s>0 and all { then we can determine in a finite number
of steps whether the sequence is or is not basic The case s=1 is ftrivial,
the case s=2 will be studied in some detail (§4).

T. SzeLe also conjectured that any basic sequence contains =+ 1 infinitly
often. By studying periodic sequences we could, however, construct examples
containing no terms +1 at all. For instance, the sequence [13, —7,13, —7,
13, —17,...] will be shown to be basic. It is remarkable that, for the corres-
ponding base {13, —7.2,13.2,...} the decomposition (1.1) can involve large
components for small values of x:

1=13+4+13.2'413.2°—7.2,
10=—-7.2-722413.2-7.2"4 13 2°~7 2° 4 13 2'° 413 2"* 4 13.2"—-T7.2",
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In §5 we shall discuss some generalisations and some related
unsolved problems.

We are indebted to DR, A. RENY! for some valuable remarks, and to
MR. H. J. ScHUTTE for verifying the numerical material listed at the end of §4.

§ 2. Bases and basic sequences.

We first prove SzELE’s conjecture :

Lemmal. If {b,0b,0bs,...} is a basis, then one of the b’s is odd
and all others are even.

Proof. At least one of the &’s is odd, for otherwise (1.1) is impossible
for x odd. The numeration being irrelevant, the lemma can be proved by
showing that b,b, is even.

Let V, be the set of those integers n for which, in (1.1), &==0; V, the
set with =0, W the set with &=¢=0.

Consider two integers x, y, with x—y==2>,. First assume y¢€V,, then
we have

y:i’e;(y)b.- and hence x=06,+ $e.-(y)b.-.

Since the representation of x is unique, we infer that x does not belong
to V,. On the other hand, if & (x)=1, we find &(y)=0. Hence, just one of
the numbers x, y belongs to V,.

Now if x€V,, we immediately deduce that x4 26, and x—2b, belong
to V,. Hence V, is periodic mod 2b,. Analogously V, is periodic mod 25,. It
follows that W=V, N V, is periodic mod 2b,b,. The least positive period
of W be denoted by P.

Let, for Az=0 or 1, u=0 or 1, W, denote the set of integers for
which & =4, &= pu. Clearly, W;, can be obtained from W= W,, by trans-
lation. Let K be the number of integers of W which are >0 and g P. It
follows that any of the sets Wy, W, W, W), contains exactly K numbers in
a period. These sets are mutually disjoint; their union is the set of all
integers. Consequently P—4K.

It follows that 4 divides 2b,b,; hence either b, or b, is even.

Theorem 1. Any base can, by rearrangement, be written in the form
(2.1) {dy, 20, 3" . +.}
where the numbers d; are odd.

Proof. Let {b,.b,,...} be a base. By the lemma, we may suppose
b, to be odd, and b,, b,,... to be even. Now {b,,b,,...} is a base for the
set of even numbers, and so {5;,3bs,...} is a base for the integers. Again,
one of its elements must be odd, etc..
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As stated in § 1, a sequence [d,,d,,...] of odd numbers will be called
basic, whenever (2.1) is a base. The problem as to which odd sequences
are basic, has the nature of a convergence problem. Namely, if d,,d,,d,,...
are given odd numbers, any integer x can be formally developed into a
series, analogous to HENSEL’s p-adic expansions:

(2.2) x= 2 &di2' (=0 or 1, > &< o).
=] ]

Here the & are uniquely determined by x, and (22) has to be
interpreted as follows: for any k=1 we have

k
(2.3) x= 2 &d;2—'=0 (mod 2¥).
=]

o
Clearly, the sequence [d,,d,,d;,...] is basic whenever > & < oo for all x.
1

It is easily proved that, if d, is odd, [d,,d,,d;,...] is basic if and only
if [d,,d;,...] is basic. Hence we have

Theorem 2. A basic sequence remains basic whenever a finite number
of odd numbers is added, omitted or changed into other odd numbers.
The following rather frivial negative criteria are immediate consequences:

Theorem 3. If all but a finite number of the d’s are of like sign,
then the sequence (d,,d,,...] is not basic

If all but a finite number of the d’s are divisible by one and the same
prime number, the sequence (d,,d,, ...] is not basic.

Owing to theorem 2 we may assume that there are no exceptions at
all; in that case both results are trivial.

A negative criterion of a different kind is

Theorem 4. If we have, for all large k,

dx— [ d
(2.9) o) > Adetl oy Aocal B

1
2 »
then [d, d,,...] is not basic.

Proof. Assume [d,,d,,...] to be a basic sequence. If I is a natural
number, then there are 2'4-1 integers whose absolute value does not exceed
21, On the other hand, the number of integers of the form

Z&z‘_ld,'
1
is 2. It follows that there exist numbers m and k, such that
Im| <2, m=2"""di+&_12"2dp1 ...+ &dy, k>L
Now by taking [/ sufficiently large, we obtain a contradiction from (2.4).
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Corollary. If |dwa1|=|di|>1 for all large values of k, then
[d,,d,,.. ) is not basic.

In theorem 5, we shall give a sufficient condition. It is a very special
one, but it shows that the d’s 1in a basic sequence need not be bounded
and that an infinity of them may be equal to one and the same odd number.
Actually, from any arbifrary sequence of odd numbers we can make a basic
sequence, by interpolation of sufficiently long sequences of terms +1 at
infinitly many places.

Theorem 5. Let d,,d,,... be a sequence of odd numbers. Assume that,
Jor any positive number A, we have an index | with the property that

J’ |dh| =|di-1| =1, di=—di1,

(25) dis | d,_. '+ +|2d1 %

=4 -23-14A.

i 1dt-2l +{

Then |d,,d,,...] is a basic sequence.

Proof. Take an arbitrary integer x, choose A > |x| and take ! such
that (2.5) holds. Consider the numbers of the form

(2.6) D & 2i=d; (=0 or 1).
=1

Each residue class mod 2! contains just one of these numbers. Let x, be
of the form (2.6) and such that x=x, (mod 2°). It follows from (2.5) that
|x,]<2'—A. On the other hand we have |x|<A, and so |x—x,|<2.
Consequently we have x=x,, and so x is of the form (2.6). Therefore, any
integer can be represented by the base {d,,2d,,2d,,...}.

§ 3. Periodic basic sequences.

Consider a sequence of odd numbers which is, for some natural
number s, periodic mod s, i.e. diys=d; for all i.)%).

If x is given, the numbers &,...,&(&;=0 or 1) can be determined
uniquely such that in

3.1) x— Zeﬂ‘-‘d.-:?xl

x, is an integer. (See (2.3)).
This defines a mapping x — x, of the set of integers into itself. Iterating
this mapping we have x—Xx,—» X,—.... It follows from the periodicity

1) By theorem 2, our results can be extended immediately to sequences satisfying
d;+,= d; for all sufficiently large i.
?) The case s =1 is not interesting; in that case theorem 3 shows that the sequence

s not basic.



236 N. G. de Bruijn

mod s of the sequence [d,,d,,...] that x, is uniquely determined by the
condition that ¢,,...,&,(&;=0 or 1) exist such that

3.2 X— 2, &2~ 1d; =2"x,.
it follows that x can be written in the form (2.2) with > & <oc if and only
if the iterates x, vanish for all large values of n.

The mapping x— x, defines a graph. The vertices are all the integers;
two vertices a,b are connected by an oriented edge from a to b whenever
we have a— b in the mapping. Closed loops a—a may occur, but we
always remove the loop 0—0. Clearly we have

Theorem 6. A periodic sequence of odd integers is basic if and only
if the graph of the mapping x —+x, (defined by (3.1) is a free.

The root of the tree is always 0, of course. If the graph is not a tree,
it still contains an infinite tree, with root 0; it consists of all integers x
which can be written in the form (2.2) with > & <o,

If x=y (mod 2°), x—+x,,y—y,, we have x —y=2°(x, — y,). Hence
the mapping x—»Xx, is known whenever the images of the x-values 1,2,3,...,2,
are known, '

Lemma 2. There exist numbers A and B, (A<B,A<0, B =0), such that

a) for x< A we have x<x,=B
b) for A<x<B we have A=x,<B
¢) for x> B we have AsSx,<x.

Proof. Denoting the sum in (3. 1) by u(x), we have x—u(x)=2x
Putting v(x) =u(x)/(1—2°) we have either x<x,<v(x) or x=2x,=v(x) or
v(x)<x, <X f

For u(x) we have 2* possible values, according to the possible values

for &,...,&. Now the numbers A =min (v(x)), B=max (v(x)) satisfy the
conditions a@,b and ¢, Since 0—-0, it follows from a) that A <0 and from
¢) that B=0.

We notice that A may be replaced by any number A'<A and B by
any number B> B

Lemma 2 enables us to determine, by a finite number of operations,
whether the graph is or is not a tree. Suitable numbers A and B are easily
obtained; after that we consider the part of the graph whose vertices corres-
pond to numbers x with A<x<B. By lemma 2, this part is a tree if and
only if the whole graph is a tree.

Examples.
1. Consider s =2,d, = 13,d, = —7. The mapping is completely described
by 4t—1t 4t4+1—t—3,4t+2—1t+4,4t+3—1t+1, for all infegers ¢
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We can take A= —4,B=4 and thus neglect all integers < —4 or > 4. The
remaining part is a tree with root 0, for —2-+3+1+»—3+>—4->—1-0;
24~ 1-+—3 etc.. Hence the sequence [13,—7,13,—7,...] is basic.

2. Take s=2,d,=3,d,=—1. The graph turns out to contain a sub-
tree, covering all positive, but not all negative integers. Consequently the set
{3,—2,3.2%, —2°3.24, ...} is a base for the set of natural numbers, but not
for the set of all integers.

If the least possible values for |A| and B are large, the application of
theorem 6 can be troublesome. Then theorems 3, 4, 5 and 7 might be useful.
So, for instance, theorem 7 shows that the sequence [5,1,—1,1,5,1,—1,1,...]
is not basic, since 54240 (—2%)+2°=0 (mod 15).

Theorem 7. A necessary and sufficient condition for the odd sequence
d, d,, ... (with period s) to be basic, is that

(3.3) 0+ 2 &2-'d;=0 (mod 2™ —1)

=
is impossible for n=1,2,3,...,&=0o0r 1 (i=1,...,ns).

Proof. It follows fromlemma 2 that the graph is a tree if and only if it
contains no cyclic sub-graph. Assume (3. 3) to be true for some n and some
set of &s. Denoting the sum occurring in that formula by (1—2%)x, we
infer from (3 2) that x= x,.

Since x & 0, this means the occurrence of a cycle of length n. Con-
versely, x—=2x, <+ 0 means that (3.3) is true. This proves the theorem.,

It may be remarked that, -in applying theorem 7 we may neglect the
values of n which exceed the number of integers 0 in the interval
A=x<B. For, by lemma 2, no cycle contains numbers outside that interval,
and no cycle contains the number 0.

§ 4. Sequences with the period 2.

We shall give a more detailed discussion of the case s = 2. Hence we
consider sequences

@1 [a,b,a,b....],

where both a and b are odd. It (4. 1) is basic, we simply say that [a, b] is
basic. There are infinitely many basic pairs (Theorem 9 be ow).

The property of a pair [a,b] to be basic can be stated in a different
form also. Let S denote the set 0,1,4,5,16,17,20,21,64,65,... of non-
negative numbers whose 4-adic representation does not contain the digits 2
and 3. Then [a,b] is basic if and only if the following statement holds:
Any integer x can be represented uniquely in the form

4.2) x=as,-+2bs, (5,€S,5,€8).
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So, for instance, 13s,—14s, represents all integers uniquely. (See the list at
the end of this section).

We shall apply the theorems of the preceding sections to our present
case. If [a,b] is basic, then @ and & have opposite signs, and their g. c. d.
equals 1 (theorem 3). Furthermore [b,a] [—a, —b], [—b, —a] will be basic
as well (theorem 2). Theorem 4 cannot be applied; neither theorem 5
(except for [I,—1] and [—1,1]). Theorem 6 is of course a never failing
criterion, but it reveals no general facts. Besides, its application is troublesome.

Theorem 7 gives infinitely many linear congruences none of which are
satisfied by any basic pair [a,8] Taking n=1 we find a==0(3),
a+2b6=0(3),65=0(3).

Since both a and b are odd, we infer
(4. 3) a+b=0 (mod 6), (@6)=1,(56)==1.

There are also applications of a more general nature ( heorems 8 and 9).

Theorem 8. If either a or b is divisible by any number of the form
2" 41, then [a,b] is not basic.

Proof. It is, of course, sufficient to show it for a. So assume that
a=(2"+1)¢, and that [a, b] is basic.

The fact that a==0 (3) shows that m is even, for otherwise 2"‘+ 1=0(3).
Writing m =2k, we have

(4.4) a+2b+2%a+2°0+4 ..+ 2%+ 2%p 2%+ h 4-2%+3p 4 ., - 2%-1p =
=a(l 422424 2% 425 (1 + 224 204, . 4 20 =
=5 a(2%—1)+5b(2%—1) = (c+2b) (2*—1)
By (4. 3) we have (2*+1)c+b6=0(3), and so ¢+2b=0(3). It follows

that the expression (4.4) is divisible by 2%—1, Now theorem 7, with
s ==2, n=2k shows that [a, ] is not basic.

Theorem 9, The pair [2%*'—1,—1] is basic (k=0, 1,2,...).'

Proof. Assume (3.3) to be possible for a certain n; in the present
case this means

(4.5) (4—1)(0,+40,4+4%%+...+40, ) =2+ 4n+...+4",_,)
=0 (mod 4"—1)

for a special set of numbers d; and #;, each one of them being either O or 1,

but at least one of them being 1. For i<0 and i=n we define &; by

0;=0; where j=i (n) and 0<j<n Now we can infer from (4 5) that

the number

(4- 6) “(du+4dl+---+4”h1‘5"_1)+
+2{(0—m) + 40— m) + ... + 4 (Boirn— ) }
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is a multiple of 4"—1. The absolute value of (4.6) is less than 4"—1;
consequently it is zero. It easily follows that all &’s and #’s are zero, which
contradicts our assumption.

Necessary conditions for [a, b] to be basic can also be obtained by
considering the ratio == — a/b. By T we denote the set of #'s arising from
basic pairs. We notice that ¢ 7 implies that £>0 and #7'¢T.

We can find infinitely many intervals which contain no points of T.
Consider a basic pair [a,b] with a>—b>0, and take x——1 in (4 2),
It follows that # can be written in the form (s,+4a™)/2s,, 5,€8,5,€S. It is
easily verified that (s,4a")/2s, is contained in at least one of the closed
intervals (n=0,1,2,..., k=0,1,2....)

4k % (4n+k+1 —1)4a?
(_%. (41— 1')_ ’ 2 4n J
unless a=1{f=s,—35,= 1. It follows that the open intervals

(1;—) [3,6), (1|,24),...,(%4“”—1—%,6.4"],...

are all free from points of 7.

It is not difficult to obtain more intervals, but their total measure seems
to be relatively small.

We conclude this section with a list of all basic pairs [a, b], as far as
100=a >—b>0. They are:

[l'—l]l [7"—]]1 [3],-—1], [37,——1], [13r—7]’ [43: —7]' I73s _T]: [23»_'1 1];
(89, —11], [31, —13], [31, —19], [49, —31], [61, —31], [67, —31], [73, —31],
[77, —41), [83, —41], [71, —47]. [77, —47T], [97, —49].

§ 5. Generalizations.

A simple generalization of the notion of a base is obtained as follows.
_Let A be a finite set of # natural numbers a,,...,a,, and assume 0€A. The
set {b,,b,,...} will now be called an A-base, whenever any integer x can
be written in the form

. 1) foo 2k (e&A,Z[sJ(oc).

The example h=3,A={—1,0, 1}, b;=3"" is well-known from BACHET’s
weight problem.

An A-base will be called simple if it can be rearranged into the form
{d,, hd,, i*d;,...}. It is easily seen that, in that case, the numbers a,d,,...,a,d,
form a complete residue system mod /. Hence a,,...,a, form a complete
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residue system, and (d,,h)==1. The argument can be repeated, which leads
to (dy, A)=(ds, A)=...= 1.

A large part of the contents of the preceding sections can be extended
to simple A-bases. (The expansions (2.2), theorem 2, the second part of
theorem 3, theorem 4 and the whole of § 3). :

We do not yet know which sets A have the property that there exists
any simple A-base. A necessary condition is, as we saw above, thata,,...,a,
form a complete set of residues mod h. A further trivial necessary condition
is, that no prime divides all numbers of A.

If A consists of & consecutive numbers (including 0), then we can
show, by straightforward extension of theorem 5, that infinitely many A-bases
exist. Actually, any sequence {+1,+A,+A%...} is an A-base, whenever
both 41 and —1 occur infinitly often. The latter restriction is superfluous
if A contains elements of either sign. Furihermore it is clear that periodic
basic sequences exist also.

The next problem is, which A’s have the property that there exists any
non-simple A-base. Such A’s exist indeed: if we take h =4, A = {0, 1,4,5,},
then {1,2, —2¢ —25 28 2° —2" —2% _ _} is a non-simple A-base.

On the other hand, it is easily proved that every A-base is simple,
whenever A consists of & consecutive numbers (0€A), where h is a prime.
The proof can be given by direct extension of the proof of lemma 1.

The problem as to the existence and structure of non-simple A-bases
is related to a few conjectures on abelian groups, which we state below.

Considering addition as the group operation, an abelian group G is
said to be the direct sum of the sub-sets S,,...,S,, if every element g€ G
can be uniquely represented in the form g==s,+4...4s,,8.€S8;. We write
G=S8,4+...+S8,. If H is a sub-group of G, a sub-set Sc G is said to be
periodic mod H, whenever s€S, h€ H imply s+ he€S.

Conjecture 1. Let G<be a finite abelian group of order >1, and
assume G==S8,+S,. Then either S, or S, is periodic mod some sub-group
of order > 1.

If G is infinite, then neither S, nor S, need to be periodic (sce (4.2),
where neither @S nor 268 are periodic) If however S, is finite, and G is
the group of all integers, then S, is periodic?®).

The following conjecture is a consequence of conjecture I:

Conjecture 2. Let R be the set of all integers. Let p be a prime:
Let S, be a set of p integers, O being one oj them, and assume that the
integers of S, have no common factor. Finally assume R—= S, S,, and

%) See a problem, suggested by the author: Matematikai Lapok 1 (1950), p. 153
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0€S,. Then S, is the set of all multiples of p, and S, is a complete set of
residues mod p.

This can be derived from conjecture 1 as follows. As it was remarked
before, S, i3 periodic; let m be its exact period. If M denotes the group of
residue classes mod m, then R=3S,+ S, furnishes a dissection M =St} S3,
where S; consists of the residue classes determined by the elements of
S.. & can not be periodic mod any proper sub-group of M, for this would
imply that the period of S; is less than m. Hence S is periodic mod H,
where H is a group of order >1. Clearly the number of elements of S} is
a multiple of the order of H; it follows that the latter number equals p.

The group M has only one sub-group of order p; its elements
are=0 (mod m/p). The. elements of S, were assumed to have no common
factor, whence m=p. It follows that S3 consists of but one element: this is
the residue class=0 (mod p) This implies that S, is the set of all p-tuples,
and S, is a complete residue system mod p.

The conditions a: “p is a prime” and b: ‘the integers of S, have no
common factors”, should not be omitted. This is demonstrated by the
following examples.

a) Take S,=1{0,1,4,5}, S, the set of all numbers =0 or =2 (mod 8).
Then R=3S8,+S,, and S, does not consist of all 4-tuples.

b) Take p=3,S5,=1{0,2,4},S, the set of all numbers =0 or =1
(mod 6). Again R=_S,+ S,, and S, does not consist of all 3-tuples.

It is possible to give a proof, independent of conjecture 1, of the
second part of conjecture 2, namely that S, is a complete set of residues
mod p. Namely, let m be the period of S,, and let M— S+ S: as above.
Let a,,a,,...,a, and b,,...,bn; be non-negative representatives of the
residue classes contained in ST and S, repectively. Put

P m
f@ =2 x, g)=2x"
Then we have, operating in the ring of polynomials with integer coefficients,

fXegx)=14+x+x1+... 4 x™1! (mod x™—1)
If the ' h-th cyclotomic polynomial is denoted by Ki,(x), we infer that
f(x)g (x) is divisible by [J[ Ki(x). Wehave f(1)=p, g(1)=m/p,

d/m, d>1

Il Ki())=m; Ki(1)=¢q if d is a power of a prime ¢, and Ki(1)=1"

am,d>1
otherwise. The polynomials Kj;(x) being irreducible, it follows that f(x) is,

for some 2, divisible by Kpa(x)=1+x*" 4 x¥* " 4 xte-0p*

If we reduce f(x) (mod x**—1) to a polynomial f, (x) of degree < p*,
then f,(x) has non-negative coefficients, whose sum equals p. Whereas
£, (x)=0 (mod K,4(x)), we infer that the coefficient of x**'(k=1,2,...,p—1)
is the same as the coefficient of x°, which is 1. The sum of the coefﬁciems

D 16
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of f,(x) being p, we find that f,(x)= Kyi(x). It 2=1, this means that all
numbers of S, are =0 (mod p), which was excluded beforehand. Consequently
fix)=14x+4...+x»!, whence it follows that S, is a complete residue
system mod p

It seems to be difficult to prove the first part of conjecture 2 along
the same lines. It would be accomplished by showing that f(x) is not
divisible by any cyclotomic polynomial different from K,(x) (then it would
follow that g(x)=0 (mod (x™—1)/K,'x)) etc) This is trivial for p=2
and still true*) for p—3, but it fails for p=>5: the polynomial 14 x?+4 x*+
+ x*+ x® is divisible by K, (x) Nevertheless the dissection R ={0,2,3,4,6} 4+
+S;. 0€S;, implies that S; consists of all multiples of 5

If conjecture 2 is true, then we have immediately: if the number of
elements of A is a prime, then every A-base is simple.

The author does not know whether the following conjecture, which
includes conjecture 1 as a special case, is a consequence of conjecture 1.

Conjecture 3. Let G be a finite abelian group of order >1, and
G=38,+...+S., then at least one of the S's is periodic mod some sub-
group of order > 1.

A special case was proved by G. Haj0s®). who assumed that ezch S;
consists of the multiples 0, A;,24;,3A.,...,a:A; of a group-element A,.

A still more difficult problem is to find all dissections of the set R of
all integers into a finite or an infinite number of components S. For
simplicity it can be assumed that O belongs to all components S. If the
number of components is oo, then R=3S,-S,+... has to be interpreted
as follows: any number Xx can be represented uniquely in the form

X == Z‘S{ (s:€S), where all but a finite number of the s; equal zero.
1

At present we do not aitempt any speculations as to the structure of
these disseclions.

(Received August 21, 1950.)

4) This can be derived from the fact that 14-x°4 xt==0, (a, b)=1,]x| =1 imply
that x is a primitive third root of unity.

5) G HaJos: Uber einfache und mehrfache Bedeckung des n-dimensionalen Raumes
mit einem Wiirfelgitter, Math. Z. 47 (1942), 427—467.



