Two versions of graded rings

By A. V. KELAREV (Tasmania) and N. R. McCONNELL (Queensland)

Abstract

Let R be a ring which is a sum of its additive subgroups $R_{s}, s \in S$. Suppose that all rings among the R_{s} are nilpotent. We give new conditions on the interaction of the R_{s} sufficient for R to be nilpotent. Analogous results are obtained for locally nilpotent and quasi-regular rings.

1. Introduction

The motivation for this paper stems from the following general question. Let \mathcal{K} be a class of rings, S a set, R an associative ring, and let $R=\sum_{s \in S} R_{s}$ be a sum of additive subgroups R_{s} of R. Suppose that all rings among the R_{s} belong to \mathcal{K}. It is only natural to ask whether it follows that R belongs to \mathcal{K}, too. The first result in this area is due to Kegel [8], who proved that R is nilpotent provided that $|S|=2$ and both the R_{s} are nilpotent rings. Denote by \mathcal{N}, \mathcal{L} and \mathcal{J} the classes of all nilpotent, locally nilpotent, and quasi-regular rings, respectively. In general, the results of [8], [2], [6] and [12] show that for classes \mathcal{N} (if $|S|>2)$ and \mathcal{L}, \mathcal{J} (if $|S|>1$) the answer to the question is negative even if one demands that all the R_{s} are subrings and so lie in the class considered.

This raises the interesting problem of what additional assumptions are needed to imply that $R=\sum_{s \in S} R_{s}$ belongs to \mathcal{K}, as soon as all rings among the R_{s} belong to \mathcal{K}.

The assumptions of this sort known in the literature (see, for example, [9], [1], [4]) impose a restriction on the interaction of the components R_{s} by requiring that S be a semigroup and R be an S-graded ring. (This means that R is a direct sum of the R_{s}, and $R_{s} R_{t} \subseteq R_{s t}$ for any $s, t \in S$). Our present goal is to obtain new conditions sufficient for the positive answer to the general question above.

2. Main results

Let S be a semigroup, $R=\sum_{s \in S} R_{s}$ a sum of additive subgroups R_{s} of R. We say that R is a structural S-sum if and only if, for each subsemigroup (left ideal, right ideal) T of S, the sum $R_{T}=\sum_{t \in T} R_{t}$ is a subring (respectively, left ideal, right ideal) of R.

Evidently, every S-graded ring is a structural S-sum. Examples of structural S-sums which are not S-graded can be easily given with the use of $A S$-rings (cf. [13]). An important difference between S-graded rings and structural S-sums is the following. Suppose that T is a subsemigroup of S. If R is an S-graded ring, then obviously R_{T} is T-graded. However, if R is a structural S-sum, then R_{T} may be not a structural T-sum, because T may have new ideals which do not come from S.

The case where $|S|=1$ is trivial, and so throughout we assume that S is not a singleton. A semigroup entirely consisting of idempotents is called a band.

Theorem 2.1. The following are equivalent:
(i) for every structural S-sum $R=\sum_{s \in S} R_{s}$, if all rings among the R_{s} are nilpotent, then R is nilpotent;
(ii) S is a finite band.

Theorem 2.2. The following are equivalent:
(i) for every structural S-sum $R=\sum_{s \in S} R_{s}$, if all rings among the R_{s} are locally nilpotent, then R is locally nilpotent;
(ii) for every structural S-sum $R=\sum_{s \in S} R_{s}$, if all rings among the R_{s} are quasi-regular, then R is quasi-regular;
(iii) S is a band.

Let S be a semigroup, $R=\sum_{s \in S} R_{s}$. If $X \subseteq S$, then we put $R_{X}=$ $\sum_{s \in X} R_{s}$. For any $s \in S$ denote by $\langle s\rangle$ the subsemigroup generated in S by s, and put $R^{s}=R_{\langle s\rangle}$. We say that R is an S-sum if $R_{s} R_{t} \subseteq R^{s t}$ for all $s, t \in S$.

Clearly, every S-graded ring is an S-sum and every S-sum is a structural S-sum. In the special case where S is a semilattice, i.e. a commutative band, the concept of an S-sum coincides with that of a semilattice sum (cf. [17]). Note that the preservation of various ring properties by semilattice sums was investigated in [17], [16], [3], and other papers.

Theorem 2.3. The following are equivalent:
(i) for every S-sum $R=\sum_{s \in S} R_{s}$, if all rings among the R_{s} are nilpotent, then R is nilpotent;
(ii) $\quad S^{0}$ has a finite ideal chain $0=S_{0} \subseteq S_{1} \subseteq \cdots \subseteq S_{n}=S^{0}$ such that, for $i=1, \ldots, n$, factor S_{i} / S_{i-1} is finite or nilpotent, and all subgroups of S are 2-groups.

Theorem 2.4. The following are equivalent:
(i) for every S-sum $R=\sum_{s \in S} R_{s}$, if all rings among the R_{s} are locally nilpotent, then R is locally nilpotent;
(ii) S is locally finite and all subgroups of S are 2-groups.

As to the analogous question on quasi-regular rings, we can give an answer in the special case of PI-rings.

Theorem 2.5. Suppose that S is a locally finite semigroup such that all subgroups of S are 2-groups. Let $R=\sum_{s \in S} R_{s}$ be an S-sum with all subrings among the R_{s} being quasi-regular, and let R be a PI-ring. Then R is quasi-regular.

We can show that the restrictions on S are necessary, and so can not be removed from Theorem 2.5. However, it is an open question whether it is possible to drop the condition that R be a $P I$-ring. This is connected to the following

Problem 2.1. Does there exists a ring R which is not quasi-regular but is a sum of a quasi-regular subring E and an additive subgroup F such that $F^{2} \subseteq E$?

3. Proofs

For the standard concepts concerning semigroups and S-graded rings we refer to [5] and [14].

A band H is said to be rectangular if it satisfies the identity $x y x=x$. Every band B is a semilattice Y of rectangular bands $H_{y}, y \in Y$ (cf. [5], Exercise 1 in §4.2). This means that there exists a semilattice Y and paiwise disjoint rectangular bands H_{y} such that $B=\bigcup_{y \in Y} H_{y}$ and $H_{y} H_{z} \subseteq H_{y z}$ for all $y, z \in Y$. We shall use the natural partial order $\leq \operatorname{defined}$ on Y by the rule $y \leq z \Leftrightarrow y z=y$.

Let $R=\sum_{s \in S} R_{s}$ be a structural S-sum. For any $r \in R$ we fix some expression of r in the form $r=\sum_{s \in S} r_{s}$ where $r_{s} \in R_{s}$ and there is only a finite number of $r_{s} \neq 0$. The set $\operatorname{supp}(r)=\left\{s \in S \mid r_{s} \neq 0\right\}$ will be called the support of r.

The following lemma was included in Shevrin's lectures on periodic semigroups at the Ural State University.

Lemma 3.1 (L. N. Shevrin). Suppose that a periodic semigroup S contains only a finite number of idempotents, each nil factor of S is nilpotent, and every subgroup of S is finite. Then S^{0} has a finite ideal chain $0=S_{0} \subseteq S_{1} \subseteq \cdots \subseteq S_{n}=S^{0}$ such that, for $i=1, \ldots, n$, factor S_{i} / S_{i-1} is finite or nilpotent.

Proof is contained in [11], Lemma 11.
Lemma 3.2 ([9]). If S is a semigroup which is not locally finite, then there exists an S-graded ring $R=\bigoplus_{s \in S} R_{s}$ such that all subrings among the R_{s} have zero multiplication, but R is not quasi-regular.

Lemma 3.3 ([9]). If G is an infinite group, then there exists an S graded ring $R=\bigoplus_{s \in S} R_{s}$ such that all R_{s} are rings with zero multiplication, but R is not nilpotent.

Lemma 3.4. If S contains a non-idempotent element, then there exists a structural S-sum $R=\sum_{s \in S} R_{s}$ such that all subrings among the R_{s} have zero multiplication, but R is not quasi-regular.

Proof. Let $t \in S, t \neq t^{2}$. Take any field F and put $R=F[x] /\left(x^{3}\right)$, $R_{t}=F+F x, R_{t^{2}}=F x^{2}$. For any $s \in S \backslash\left\{t, t^{2}\right\}$, let $R_{s}=0$. Then R has all the required properties.

Lemma 3.5. If S has an infinite number of idempotents, then there exists an S-sum $R=\sum_{s \in S} R_{s}$ such that all the R_{s} are nilpotent rings, but R is not nilpotent.

Proof. If S contains infinitely many idempotents e_{1}, e_{2}, \ldots, then we can take any field F and put $R_{e_{i}}=x F[x] /\left(x^{i}\right), R=\prod_{i=1}^{\infty} R_{e_{i}}$, where $R_{s}=0$ for $s \notin\left\{e_{1}, e_{2}, \ldots\right\}$, and get a contradiction, because R is not nilpotent but all R_{s} are nilpotent.

Lemma 3.6. Let S be a finite semigroup, $R=\sum_{s \in S} R_{s}$ an S-sum, \mathcal{K} one of the classes $\mathcal{N}, \mathcal{L}, \mathcal{J}$, and let $R_{G} \in \mathcal{K}$ for each subgroup G of S. Then $R \in \mathcal{K}$, too.

Proof follows from [15], the proof of Lemma 4.1 (cf. [11], Lemma 5).
Lemma 3.7. Let G be a group with an element g of odd order. Then there exists a G-sum $R=\sum_{s \in G} R_{s}$ such that all subrings among the R_{s} have zero multiplication, but R is not quasi-regular.

Proof. Put $f=g^{2}$. Let $R[x, y]$ be the ring of polynomials over a field F in commuting variables x, y without free terms. Consider the ring $R=F[x, y] / I$, where I is the ideal generated by x^{3}, y^{3}, and $x y$. Put $R_{f}=F x+F y^{2}, R_{g}=F y+F x^{2}$, and $R_{t}=0$ for $t \in G \backslash\{f, g\}$. Evidently, all subrings among the R_{s} are equal to zero. Besides, $R_{f} R_{g}=R_{g} R_{f}=0$
and so these products do not contradict the definition of an S-sum. Since g^{2} and f^{2} generate the same subgroup in G as g, clearly R_{g}^{2} and R_{f}^{2} can be defined arbitrarily. Therefore R is a required example.

If G is a group with identity e, and $R=\sum_{g \in G} R_{g}$ is a G-sum, then R_{e} is called the initial component. A routine verification gives us

Lemma 3.8. Let G be a group with a normal subgroup N, and let $R=\sum_{g \in G} R_{g}$ be a G-sum. Then $R=\sum_{g N \in G / N} R_{g N}$ is a G / N-sum with initial component R_{N}.

Lemma 3.9. Let $G=\{e, g\}$ be a group, and let $R=\sum_{g \in G} R_{g}$ be a G-sum. If R_{e} is nilpotent (locally nilpotent), then R is nilpotent (locally nilpotent), too.

Proof. We shall record the proof only for local nilpotency. (The proof for nilpotency is analogous with a few simplifications). Take any finite set M of elements of R. We must prove that $M^{d}=0$ for some d.

Denote by $H(R)$ the set of homogeneous elements of R, i.e. $H(R)=$ $\bigcup_{g \in G} R_{g}$. Note that $H(R)$ may be not closed under multiplication. If $r \in H(R)$, then we fix an element $h(r)$ of G such that $r \in R_{h(r)}$. For each $x \in R$ we fix one expression of x as a sum of homogeneous elements. We can replace each $x \in M$ by all homogeneous summands in this expression, and assume that M is a finite set of homogeneous elements. Further, put $M_{k}=\bigcup_{i=1}^{k} M^{i}$. Put $P_{1}=M$, and if $i>1$ then denote by P_{i} the union of P_{i-1} and the set of the homogeneous summands of elements of $M P_{i-1} \cup P_{i-1} M$. Clearly, all P_{i} are finite.

Denote by m the nilpotency index of the subring generated in R_{e} by $R_{e} \cap M$. Let n be the nilpotency index of the subring generated in R_{e} by $R_{e} \cap P_{m+1}$. Put $d=n(m+1)$. We claim that $M^{d}=0$.

In order to prove this, we introduce auxilliary sets I_{i}^{j} where $i, j \geq 0$, and will show that

$$
M^{d} \subseteq I_{0}^{d} R^{1} \subseteq I_{1}^{d-m-1} R^{1} \subseteq I_{2}^{d-2 m-2} R^{1} \subseteq I_{n}^{0} R^{1}=0
$$

For $i, j \geq 0$, denote by I_{i}^{j} the set of all sums of products $x_{1} \ldots x_{i} y_{1} \ldots y_{j}$ such that $x_{1}, \ldots, x_{i} \in R_{e} \cap P_{(m+1)}$, and $y_{1}, \ldots, y_{j} \in M$.

First we check that $I_{i}^{j(m+1)} \subseteq I_{i+1}^{(j-1)(m+1)} R^{1}$ for all $i \geq 0, j \geq 1$. Pick any product

$$
p=x_{1} \ldots x_{i} y_{1} \ldots y_{j(m+1)} \in I_{i}^{j(m+1)}
$$

and consider several cases.
Case 1. $h\left(y_{1}\right)=e$. Then the claim is obvious, because $y_{1} \in R_{e} \cap M$ implies $p \in I_{i+1}^{(j-1)(m+1)} R^{1}$ by the definition of $I_{i+1}^{(j-1)(m+1)}$.

Case 2. $h\left(y_{1}\right)=g$ and $h\left(y_{1}\right) h\left(y_{2}\right)=e$. Then $y_{1} y_{2} \in R_{e} \cap P_{2} \subseteq$ $R_{e} \cap P_{m+1}$, and the claim is clear as in Case 1.

Case 3. $h\left(y_{1}\right)=g, h\left(y_{1}\right) h\left(y_{2}\right)=g$, and $h\left(y_{1}\right) h\left(y_{2}\right) h\left(y_{3}\right)=e$. Then $h\left(y_{2}\right)=e$ and $h\left(y_{3}\right)=g$. Clearly, $y_{1} y_{2}=x+z$, where $x \in R_{e}$, and $z \in R_{g}$. Therefore $p=u+w$, where $u=x_{0} \ldots x_{i} x y_{3} \ldots y_{j}$ and $w=$ $x_{0} \ldots x_{i} z y_{3} \ldots y_{j}$. Since $u \in I_{i+1}^{(j-1)(m+1)} R^{1}$, it remains to show that $w \in$ $I_{i+1}^{(j-1)(m+1)} R^{1}$. However, $h(z) h\left(y_{3}\right)=g g=e$, and so the claim follows as in Case 2.

Case 4. $h\left(y_{1}\right)=\ldots=h\left(y_{i-1}\right)=g$ and $h\left(y_{1}\right) \ldots h\left(y_{i}\right)=e$, for some $i \in\{1, \ldots, m+1\}$. This case is similar to Case 3 , only we use $h\left(y_{1}\right) \ldots h\left(y_{i-1}\right)=x+z$, where $x \in R_{e}$, and $z \in R_{g}$.

Given that $G=\{e, g\}$, it remains to consider the following
Case 5. $h\left(y_{1}\right)=h\left(y_{1}\right) h\left(y_{2}\right)=\ldots=h\left(y_{1}\right) \ldots h\left(y_{m+1}\right)=g$. Then $h\left(y_{2}\right)=\ldots=h\left(y_{m+1}\right)=e$, and by the choice of m we get $y_{2} \ldots y_{m+1}=0$. So $p=0 \in I_{i+1}^{(j-1)(m+1)} R^{1}$, as claimed.

Lemma 3.10. Let G be a finite 2-group, and let $R=\sum_{g \in G} R_{g}$ be a G-sum. If R_{e} is nilpotent, then R is nilpotent, too.

Proof. Every finite 2-group is nilpotent, and so has a central series with factors of order 2. Therefore the proof follows from Lemmas 3.8 and 3.9.

Lemma 3.11. Let G be a locally finite 2-group, $R=\sum_{g \in G} R_{g}$ a G-sum. If R_{e} is locally nilpotent, then R is locally nilpotent, too.

Proof. Take any finite set M of elements of R. We must prove that $M^{d}=0$ for some d. Without loss of generality we may assume that G is the subgroup generated by the supports of all elements in M. Thus we assume that G is finite. Lemma 3.10 completes the proof.

The following lemma is due to Grzeszczuck [7], the proof of Theorem 1.
Lemma 3.12. Let G be a finite group satisfying the identity $x^{2}=e$, and let $R=\sum_{g \in G} R_{g}$ be a G-sum with unity 1. Then $1 \in R_{e}$.

Proof. For any $s, t \in G$, it follows that $\{s t\} \cup\{e\}$ is a subgroup, because G satisfies $x^{2}=e$. The definition of a G-sum yields $R_{s} R_{t} \subseteq$ $R_{s t}+R_{e}$. Therefore, for every two non-empty subsets $S, T \subseteq S$, we get $R_{S} R_{T} \subseteq R_{S T}+R_{e}$. Using this we can repeat the proof of Theorem 1 in [7], and show by induction on $|G \backslash S|$ that if $e \in S$ then $1 \in R_{S}$. If we take the set $\{e\}$ as S, then we get $1 \in R_{e}$, as required.

Lemma 3.13. Let G be a finite 2-group, and let $R=\sum_{g \in G} R_{g}$ be a G-sum with unity 1 . Then $1 \in R_{e}$.

Proof follows from Lemmas 3.12 and 3.8, because every finite 2group has a central series with factors of order 2.

Proof of Theorem 2.1. Suppose that S satisfies (i). Then Lemma 3.4 implies that S is a band. By Lemma 3.5 S is finite. Thus (i) implies (ii).

Suppose that S is a finite band. Take any structural S-sum $R=$ $\sum_{s \in S} R_{s}$ such that every subring among the R_{s} is nilpotent. Since S is a band, every element s of S forms a one-element subsemigroup in S, and hence R_{s} is a subring. Therefore all R_{s} are nilpotent. Let S be a semilattice Y of rectangular bands H_{y}. For $y \in Y$ put $Q_{y}=\sum_{s \in H_{y}} R_{s}$. Let $\bar{Y}=\left\{y \in Y \mid Q_{y} \neq 0\right\}$. We shall show by induction on $|\bar{Y}|$ that R is nilpotent.

The case where $|\bar{Y}|=0$ is trivial. Now suppose that $|\bar{Y}| \geq 1$, pick a minimal element z in \bar{Y}, and put $H=H_{z}$. By the choice of z we get $R_{H}=R_{S H S}$. Hence R_{H} is an ideal of R, because $S H S$ is an ideal of S.

Take any $h, g \in H$. It is routine to verify that $H \cap h S=h H$ and $H \cap S g=H g$, because H is one of the rectagular components of S. Since $h S$ and $S g$ are right and left ideals of S, respectively, the definition of a structural S-sum yields $R_{h} R_{g} \subseteq R_{h S} \cap R_{S g} \cap R_{H}=R_{h H} \cap R_{H g}=R_{h g}$, because H is a rectangular band. It follows that $R_{h H}$ is a sum of its nilpotent left ideals $R_{h g}, g \in H$. Hence $R_{h H}$ is nilpotent. Further, R_{H} is also nilpotent, because it is a sum of its nilpotent right ideals $R_{h H}$, $h \in H$. Now we can factor out ideal R_{H}, and pass to the ring $R / R_{H}=$ $\sum_{s \in S}\left(R_{s}+R_{H}\right)$ which is nilpotent by the induction assumption. This completes the proof.

Proof of Theorem 2.2. Implications (i) \Longrightarrow (iii) and (ii) \Longrightarrow (iii) follow from Lemma 3.4.

Suppose that S is a band. Denote by \mathcal{F} the set of all finite subbands of S. Take any structural S-sum $R=\sum_{s \in S} R_{s}$ such that all the R_{s} are locally nilpotent. If $B \in \mathcal{F}$, then R_{B} is a subring of R. Although R_{B} may be not a structural B-sum, the same (induction on $|\bar{Y}|)$ argument as in the proof of Theorem 2.1, using the fact that R_{B} is a structural S-sum, shows that R_{B} is locally nilpotent. It is known that every band is locally finite. Hence each finite subset of R is contained in R_{B} for appropriate finite B. Therefore R is locally nilpotent. Thus (iii) implies (i). Implication (iii) \Longrightarrow (ii) is similar.

Proof of Theorem 2.3. Implication (ii) \Longrightarrow (i) follows from Lemma 3.1 by induction on the length n of the ideal chain of S with the use of Lemma 3.10.
(i) \Longrightarrow (ii). It follows from Lemma 3.7 that every subgroup of S is a 2-group. By Lemma 3.3 every subgroup of S is finite. Lemma 3.5 shows that S contains a finite number of idempotents.

If S has ideals $I \subseteq J \subseteq S$ such that J / I is nil but not nilpotent, then we can consider a contracted semigroup ring $R=F_{0}[J / I]$ over a field F. Clearly R is not nilpotent. However, if we put $R_{j}=F_{j}$ for $j \in J \backslash I$, and $R_{s}=0$ for $s \notin J \backslash I$, then R becomes an S-sum with all subrings among the R_{s} equal to zero. This contradiction and Lemma 3.1 show that (ii) holds, completing the proof.

Proof of Theorem 2.4. Implication (i) \Longrightarrow (ii) follows from Lemmas 3.2 and 3.7.

Lemmas 3.6 and 3.11 prove implication (ii) \Longrightarrow (i) for a finite S. The case of a locally finite S follows immediately, as in the proof of Theorem 2.2 or Lemma 3.11.

Proof of Theorem 2.5. As in the proof of Theorem 2.4, Lemma 3.6 shows that it suffices to consider the case of a locally finite 2 -group. As in the proof of Lemma 3.11, it remains to deal with the case where S is a finite 2 -group. Denote the identity of the group S by e.

Suppose to the contrary that there exists an S-sum $R=\sum_{s \in S} R_{s}$ with quasi-regular component R_{e}, such that R satisfies a polynomial identity but is not quasi-regular. Let R / I be a primitive homomorphic image of R. Then it is readily verified that $R / I=\sum_{s \in S}\left(R_{s}+I\right)$ is an S-sum. Kaplansky's theorem implies that R / I has a unity 1. By Lemma 3.13, $1 \in R_{e}$. However, R_{e} is quasi-regular. This contradiction completes the proof.

References

[1] M. Beattie and E. Jespers, On perfect graded rings, Commun. Algebra 19 (1991), 2363-2371.
[2] L. A. Bokut', Embeddings in simple associative algebras, Algebra i Logika 15 (1976), 117-142.
[3] H. L. Chick and B. J. Gardner, The preservation of some ring properties by semilattice sums, Commun. Algebra 15 (1987), 1017-1038.
[4] M. V. Clase and E. Jespers, Perfectness of rings graded by finite semigroups, Bull. Math. Soc. Belg. (Ser. A) 45 (1993), 93-102.
[5] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroups, vol. 1, Amer. Math. Soc., Providence, Rhode Island, 1961.
[6] M. Ferrero and E. R. Puczyłowski, On rings which are sums of two subrings, Arch. Math. 53 (1989), 4-10.
[7] P. Grzeszczuk, On G-systems and G-graded rings, Proc. Amer. Math. Soc. 95 (1985), 393-352.
[8] O. H. Kegel, Zur Nilpotenz gewisser assoziativer Ringe, Math. Ann. 149 (1962/63), 258-260.
[9] A. V. Kelarev, On the radicalness of semigroup graded algebras, Matem. Issled. (Kishiniov) 111 (1989), 82-96.
[10] A. V. Kelarev, Radical classes and bands of associative algebras, Isv. Vyssh. Ucheb. Zav. Matem. 7 (1990), 21-28.
[11] A. V. Kelarev, On semigroup graded PI-algebras, Semigroup Forum 47 (1993), 294-298.
[12] A. V. Kelarev, A sum of two locally nilpotent rings may be not nil, Arch. Math. 60 (1993), 431-435.
[13] N. R. McConnell, Radicals of Dedekind domains and their extensions, Commun. Algebra 19 (1991), 559-583.
[14] C. Năstăsescu and F. van Oystaeyen, Graded Ring Theory, North Holland, New York, 1982.
[15] J. Okniński and P. Wauters, Radicals of semigroup rings of commutative semigroups, Math. Proc. Cambridge Philos. Soc. 435-445 (1986).
[16] M. V. Volkov and A. V. Kelarev, Varieties and bands of associative algebras, Isv. Vyssh. Ucheb. Zav. Matem. 9 (1986), 16-23.
[17] J. Weissglass, Semigroup rings and semilattice sums of rings, Proc. Amer. Math. Soc. 39 (1973), 471-477.

```
A. V. KELAREV
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TASMANIA
G.P.O. BOX 252 C
HOBART, TASMANIA }700
AUSTRALIA
E-MAIL: KELAREV@HILBERT.MATHS.UTAS.EDU.AU
N. R. MCCONNELL
DEPARTMENT OF MATHEMATICS AND COMPUTING
CENTRAL QUEENSLAND UNIVERSITY
ROCKHAMPTON M.C.
QUEENSLAND 4702
AUSTRALIA
E-MAIL: N.MCCONNELL@CQU.EDU.AU
```

(Received May 2, 1994)

