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Two versions of graded rings

By A. V. KELAREV (Tasmania) and N. R. McCONNELL (Queensland)

Abstract. Let R be a ring which is a sum of its additive subgroups Rs, s ∈ S.
Suppose that all rings among the Rs are nilpotent. We give new conditions on the
interaction of the Rs sufficient for R to be nilpotent. Analogous results are obtained
for locally nilpotent and quasi-regular rings.

1. Introduction

The motivation for this paper stems from the following general ques-
tion. Let K be a class of rings, S a set, R an associative ring, and let
R =

∑
s∈S Rs be a sum of additive subgroups Rs of R. Suppose that all

rings among the Rs belong to K. It is only natural to ask whether it fol-
lows that R belongs to K, too. The first result in this area is due to Kegel
[8], who proved that R is nilpotent provided that |S| = 2 and both the Rs

are nilpotent rings. Denote by N , L and J the classes of all nilpotent,
locally nilpotent, and quasi-regular rings, respectively. In general, the re-
sults of [8], [2], [6] and [12] show that for classes N (if |S| > 2) and L,
J (if |S| > 1) the answer to the question is negative even if one demands
that all the Rs are subrings and so lie in the class considered.

This raises the interesting problem of what additional assumptions
are needed to imply that R =

∑
s∈S Rs belongs to K, as soon as all rings

among the Rs belong to K.
The assumptions of this sort known in the literature (see, for example,

[9], [1], [4]) impose a restriction on the interaction of the components Rs by
requiring that S be a semigroup and R be an S-graded ring. (This means
that R is a direct sum of the Rs, and RsRt ⊆ Rst for any s, t ∈ S). Our
present goal is to obtain new conditions sufficient for the positive answer
to the general question above.
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2. Main results

Let S be a semigroup, R =
∑

s∈S Rs a sum of additive subgroups
Rs of R. We say that R is a structural S-sum if and only if, for each
subsemigroup (left ideal, right ideal) T of S, the sum RT =

∑
t∈T Rt is a

subring (respectively, left ideal, right ideal) of R.
Evidently, every S-graded ring is a structural S-sum. Examples of

structural S-sums which are not S-graded can be easily given with the use
of AS-rings (cf. [13]). An important difference between S-graded rings and
structural S-sums is the following. Suppose that T is a subsemigroup of
S. If R is an S-graded ring, then obviously RT is T -graded. However, if
R is a structural S-sum, then RT may be not a structural T -sum, because
T may have new ideals which do not come from S.

The case where |S| = 1 is trivial, and so throughout we assume that S
is not a singleton. A semigroup entirely consisting of idempotents is called
a band.

Theorem 2.1. The following are equivalent:

(i) for every structural S-sum R =
∑

s∈S Rs, if all rings among
the Rs are nilpotent, then R is nilpotent;

(ii) S is a finite band.

Theorem 2.2. The following are equivalent:

(i) for every structural S-sum R =
∑

s∈S Rs, if all rings among
the Rs are locally nilpotent, then R is locally nilpotent;

(ii) for every structural S-sum R =
∑

s∈S Rs, if all rings among
the Rs are quasi-regular, then R is quasi-regular;

(iii) S is a band.

Let S be a semigroup, R =
∑

s∈S Rs. If X ⊆ S, then we put RX =∑
s∈X Rs. For any s ∈ S denote by 〈s〉 the subsemigroup generated in S

by s, and put Rs = R〈s〉. We say that R is an S-sum if RsRt ⊆ Rst for
all s, t ∈ S.

Clearly, every S-graded ring is an S-sum and every S-sum is a struc-
tural S-sum. In the special case where S is a semilattice, i.e. a commu-
tative band, the concept of an S-sum coincides with that of a semilattice
sum (cf. [17]). Note that the preservation of various ring properties by
semilattice sums was investigated in [17], [16], [3], and other papers.

Theorem 2.3. The following are equivalent:

(i) for every S-sum R =
∑

s∈S Rs, if all rings among the Rs are
nilpotent, then R is nilpotent;
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(ii) S0 has a finite ideal chain 0 = S0 ⊆ S1 ⊆ · · · ⊆ Sn = S0 such
that, for i = 1, . . . , n, factor Si/Si−1 is finite or nilpotent,
and all subgroups of S are 2-groups.

Theorem 2.4. The following are equivalent:

(i) for every S-sum R =
∑

s∈S Rs, if all rings among the Rs are
locally nilpotent, then R is locally nilpotent;

(ii) S is locally finite and all subgroups of S are 2-groups.

As to the analogous question on quasi-regular rings, we can give an
answer in the special case of PI-rings.

Theorem 2.5. Suppose that S is a locally finite semigroup such that
all subgroups of S are 2-groups. Let R =

∑
s∈S Rs be an S-sum with all

subrings among the Rs being quasi-regular, and let R be a PI-ring. Then
R is quasi-regular.

We can show that the restrictions on S are necessary, and so can not
be removed from Theorem 2.5. However, it is an open question whether it
is possible to drop the condition that R be a PI-ring. This is connected
to the following

Problem 2.1. Does there exists a ring R which is not quasi-regular
but is a sum of a quasi-regular subring E and an additive subgroup F such
that F 2 ⊆ E?

3. Proofs

For the standard concepts concerning semigroups and S-graded rings
we refer to [5] and [14].

A band H is said to be rectangular if it satisfies the identity xyx=x.
Every band B is a semilattice Y of rectangular bands Hy, y ∈ Y (cf. [5], Ex-
ercise 1 in §4.2). This means that there exists a semilattice Y and paiwise
disjoint rectangular bands Hy such that B =

⋃
y∈Y Hy and HyHz ⊆ Hyz

for all y, z ∈ Y . We shall use the natural partial order ≤ defined on Y by
the rule y ≤ z ⇔ yz = y.

Let R =
∑

s∈S Rs be a structural S-sum. For any r ∈ R we fix some
expression of r in the form r =

∑
s∈S rs where rs ∈ Rs and there is only a

finite number of rs 6= 0. The set supp(r) = {s ∈ S | rs 6= 0} will be called
the support of r.

The following lemma was included in Shevrin’s lectures on periodic
semigroups at the Ural State University.
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Lemma 3.1 (L. N. Shevrin). Suppose that a periodic semigroup S
contains only a finite number of idempotents, each nil factor of S is nilpo-
tent, and every subgroup of S is finite. Then S0 has a finite ideal chain
0 = S0 ⊆ S1 ⊆ · · · ⊆ Sn = S0 such that, for i = 1, . . . , n, factor Si/Si−1

is finite or nilpotent.

Proof is contained in [11], Lemma 11.

Lemma 3.2 ([9]). If S is a semigroup which is not locally finite, then
there exists an S-graded ring R =

⊕
s∈S Rs such that all subrings among

the Rs have zero multiplication, but R is not quasi-regular.

Lemma 3.3 ([9]). If G is an infinite group, then there exists an S-
graded ring R =

⊕
s∈S Rs such that all Rs are rings with zero multiplica-

tion, but R is not nilpotent.

Lemma 3.4. If S contains a non-idempotent element, then there ex-
ists a structural S-sum R =

∑
s∈S Rs such that all subrings among the Rs

have zero multiplication, but R is not quasi-regular.

Proof. Let t ∈ S, t 6= t2. Take any field F and put R = F [x]/(x3),
Rt = F + Fx, Rt2 = Fx2. For any s ∈ S\{t, t2}, let Rs = 0. Then R has
all the required properties.

Lemma 3.5. If S has an infinite number of idempotents, then there
exists an S-sum R =

∑
s∈S Rs such that all the Rs are nilpotent rings,

but R is not nilpotent.

Proof. If S contains infinitely many idempotents e1, e2, . . . , then
we can take any field F and put Rei = xF [x]/(xi), R =

∏∞
i=1 Rei , where

Rs = 0 for s 6∈ {e1, e2, . . . }, and get a contradiction, because R is not
nilpotent but all Rs are nilpotent.

Lemma 3.6. Let S be a finite semigroup, R =
∑

s∈S Rs an S-sum,
K one of the classes N , L, J , and let RG ∈ K for each subgroup G of S.
Then R ∈ K, too.

Proof follows from [15], the proof of Lemma 4.1 (cf. [11], Lemma 5).

Lemma 3.7. Let G be a group with an element g of odd order. Then
there exists a G-sum R =

∑
s∈G Rs such that all subrings among the Rs

have zero multiplication, but R is not quasi-regular.

Proof. Put f = g2. Let R[x, y] be the ring of polynomials over a
field F in commuting variables x, y without free terms. Consider the ring
R = F [x, y]/I, where I is the ideal generated by x3, y3, and xy. Put
Rf = Fx + Fy2, Rg = Fy + Fx2, and Rt = 0 for t ∈ G\{f, g}. Evidently,
all subrings among the Rs are equal to zero. Besides, RfRg = RgRf = 0
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and so these products do not contradict the definition of an S-sum. Since
g2 and f2 generate the same subgroup in G as g, clearly R2

g and R2
f can

be defined arbitrarily. Therefore R is a required example.

If G is a group with identity e, and R =
∑

g∈G Rg is a G-sum, then
Re is called the initial component. A routine verification gives us

Lemma 3.8. Let G be a group with a normal subgroup N , and let
R =

∑
g∈G Rg be a G-sum. Then R =

∑
gN∈G/N RgN is a G/N -sum with

initial component RN .

Lemma 3.9. Let G = {e, g} be a group, and let R =
∑

g∈G Rg be a

G-sum. If Re is nilpotent (locally nilpotent), then R is nilpotent (locally
nilpotent), too.

Proof. We shall record the proof only for local nilpotency. (The
proof for nilpotency is analogous with a few simplifications). Take any
finite set M of elements of R. We must prove that Md = 0 for some d.

Denote by H(R) the set of homogeneous elements of R, i.e. H(R) =⋃
g∈G Rg. Note that H(R) may be not closed under multiplication. If

r ∈ H(R), then we fix an element h(r) of G such that r ∈ Rh(r). For each
x ∈ R we fix one expression of x as a sum of homogeneous elements. We
can replace each x ∈ M by all homogeneous summands in this expression,
and assume that M is a finite set of homogeneous elements. Further,
put Mk =

⋃k
i=1 M i. Put P1 = M , and if i > 1 then denote by Pi the

union of Pi−1 and the set of the homogeneous summands of elements of
MPi−1 ∪ Pi−1M . Clearly, all Pi are finite.

Denote by m the nilpotency index of the subring generated in Re by
Re ∩M . Let n be the nilpotency index of the subring generated in Re by
Re ∩ Pm+1. Put d = n(m + 1). We claim that Md = 0.

In order to prove this, we introduce auxilliary sets Ij
i where i, j ≥ 0,

and will show that

Md ⊆ Id
0R1 ⊆ Id−m−1

1 R1 ⊆ Id−2m−2
2 R1 ⊆ I0

nR1 = 0.

For i, j≥ 0, denote by Ij
i the set of all sums of products x1 . . . xiy1 . . . yj

such that x1, . . . , xi ∈ Re ∩ P(m+1), and y1, . . . , yj ∈ M .
First we check that I

j(m+1)
i ⊆ I

(j−1)(m+1)
i+1 R1 for all i ≥ 0, j ≥ 1. Pick

any product
p = x1 . . . xiy1 . . . yj(m+1) ∈ I

j(m+1)
i .

and consider several cases.
Case 1. h(y1) = e. Then the claim is obvious, because y1 ∈ Re ∩M

implies p ∈ I
(j−1)(m+1)
i+1 R1 by the definition of I

(j−1)(m+1)
i+1 .
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Case 2. h(y1) = g and h(y1)h(y2) = e. Then y1y2 ∈ Re ∩ P2 ⊆
Re ∩ Pm+1, and the claim is clear as in Case 1.

Case 3. h(y1) = g, h(y1)h(y2) = g, and h(y1)h(y2)h(y3) = e. Then
h(y2) = e and h(y3) = g. Clearly, y1y2 = x + z, where x ∈ Re, and
z ∈ Rg. Therefore p = u + w, where u = x0 . . . xixy3 . . . yj and w =
x0 . . . xizy3 . . . yj . Since u ∈ I

(j−1)(m+1)
i+1 R1, it remains to show that w ∈

I
(j−1)(m+1)
i+1 R1. However, h(z)h(y3) = gg = e, and so the claim follows as

in Case 2.
Case 4. h(y1) = . . . = h(yi−1) = g and h(y1) . . . h(yi) = e, for

some i ∈ {1, . . . , m + 1}. This case is similar to Case 3, only we use
h(y1) . . . h(yi−1) = x + z, where x ∈ Re, and z ∈ Rg.

Given that G = {e, g}, it remains to consider the following
Case 5. h(y1) = h(y1)h(y2) = . . . = h(y1) . . . h(ym+1) = g. Then

h(y2) = . . . = h(ym+1) = e, and by the choice of m we get y2 . . . ym+1 = 0.
So p = 0 ∈ I

(j−1)(m+1)
i+1 R1, as claimed.

Lemma 3.10. Let G be a finite 2-group, and let R =
∑

g∈G Rg be a
G-sum. If Re is nilpotent, then R is nilpotent, too.

Proof. Every finite 2-group is nilpotent, and so has a central series
with factors of order 2. Therefore the proof follows from Lemmas 3.8
and 3.9.

Lemma 3.11. Let G be a locally finite 2-group, R =
∑

g∈G Rg a
G-sum. If Re is locally nilpotent, then R is locally nilpotent, too.

Proof. Take any finite set M of elements of R. We must prove that
Md = 0 for some d. Without loss of generality we may assume that G is
the subgroup generated by the supports of all elements in M . Thus we
assume that G is finite. Lemma 3.10 completes the proof.

The following lemma is due to Grzeszczuck [7], the proof of Theorem 1.

Lemma 3.12. Let G be a finite group satisfying the identity x2 = e,
and let R =

∑
g∈G Rg be a G-sum with unity 1. Then 1 ∈ Re.

Proof. For any s, t ∈ G, it follows that {st} ∪ {e} is a subgroup,
because G satisfies x2 = e. The definition of a G-sum yields RsRt ⊆
Rst + Re. Therefore, for every two non-empty subsets S, T ⊆ S, we get
RSRT ⊆ RST + Re. Using this we can repeat the proof of Theorem 1
in [7], and show by induction on |G\S| that if e ∈ S then 1 ∈ RS . If we
take the set {e} as S, then we get 1 ∈ Re, as required.
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Lemma 3.13. Let G be a finite 2-group, and let R =
∑

g∈G Rg be a
G-sum with unity 1. Then 1 ∈ Re.

Proof follows from Lemmas 3.12 and 3.8, because every finite 2-
group has a central series with factors of order 2.

Proof of Theorem 2.1. Suppose that S satisfies (i). Then Lemma 3.4
implies that S is a band. By Lemma 3.5 S is finite. Thus (i) implies (ii).

Suppose that S is a finite band. Take any structural S-sum R =∑
s∈S Rs such that every subring among the Rs is nilpotent. Since S is

a band, every element s of S forms a one-element subsemigroup in S,
and hence Rs is a subring. Therefore all Rs are nilpotent. Let S be a
semilattice Y of rectangular bands Hy. For y ∈ Y put Qy =

∑
s∈Hy

Rs.
Let Y = {y ∈ Y | Qy 6= 0}. We shall show by induction on |Y | that R is
nilpotent.

The case where |Y | = 0 is trivial. Now suppose that |Y | ≥ 1, pick
a minimal element z in Y , and put H = Hz. By the choice of z we get
RH = RSHS . Hence RH is an ideal of R, because SHS is an ideal of S.

Take any h, g ∈ H. It is routine to verify that H ∩ hS = hH and
H ∩ Sg = Hg, because H is one of the rectagular components of S. Since
hS and Sg are right and left ideals of S, respectively, the definition of a
structural S-sum yields RhRg ⊆ RhS ∩ RSg ∩ RH = RhH ∩ RHg = Rhg,
because H is a rectangular band. It follows that RhH is a sum of its
nilpotent left ideals Rhg, g ∈ H. Hence RhH is nilpotent. Further, RH

is also nilpotent, because it is a sum of its nilpotent right ideals RhH ,
h ∈ H. Now we can factor out ideal RH , and pass to the ring R/RH =∑

s∈S(Rs + RH) which is nilpotent by the induction assumption. This
completes the proof.

Proof of Theorem 2.2. Implications (i) =⇒ (iii) and (ii) =⇒ (iii)
follow from Lemma 3.4.

Suppose that S is a band. Denote by F the set of all finite subbands
of S. Take any structural S-sum R =

∑
s∈S Rs such that all the Rs are

locally nilpotent. If B ∈ F , then RB is a subring of R. Although RB may
be not a structural B-sum, the same (induction on |Y |) argument as in the
proof of Theorem 2.1, using the fact that RB is a structural S-sum, shows
that RB is locally nilpotent. It is known that every band is locally finite.
Hence each finite subset of R is contained in RB for appropriate finite
B. Therefore R is locally nilpotent. Thus (iii) implies (i). Implication
(iii) =⇒ (ii) is similar.

Proof of Theorem 2.3. Implication (ii) =⇒ (i) follows from Lem-
ma 3.1 by induction on the length n of the ideal chain of S with the use
of Lemma 3.10.
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(i) =⇒ (ii). It follows from Lemma 3.7 that every subgroup of S is a
2-group. By Lemma 3.3 every subgroup of S is finite. Lemma 3.5 shows
that S contains a finite number of idempotents.

If S has ideals I ⊆ J ⊆ S such that J/I is nil but not nilpotent, then
we can consider a contracted semigroup ring R = F0[J/I] over a field F .
Clearly R is not nilpotent. However, if we put Rj = Fj for j ∈ J\I, and
Rs = 0 for s 6∈ J\I, then R becomes an S-sum with all subrings among
the Rs equal to zero. This contradiction and Lemma 3.1 show that (ii)
holds, completing the proof.

Proof of Theorem 2.4. Implication (i) =⇒ (ii) follows from Lem-
mas 3.2 and 3.7.

Lemmas 3.6 and 3.11 prove implication (ii) =⇒ (i) for a finite S. The
case of a locally finite S follows immediately, as in the proof of Theorem 2.2
or Lemma 3.11.

Proof of Theorem 2.5. As in the proof of Theorem 2.4, Lemma 3.6
shows that it suffices to consider the case of a locally finite 2-group. As
in the proof of Lemma 3.11, it remains to deal with the case where S is a
finite 2-group. Denote the identity of the group S by e.

Suppose to the contrary that there exists an S-sum R =
∑

s∈S Rs with
quasi-regular component Re, such that R satisfies a polynomial identity
but is not quasi-regular. Let R/I be a primitive homomorphic image
of R. Then it is readily verified that R/I =

∑
s∈S(Rs + I) is an S-sum.

Kaplansky’s theorem implies that R/I has a unity 1. By Lemma 3.13,
1 ∈ Re. However, Re is quasi-regular. This contradiction completes the
proof.
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