ERRATA.

Tomus 1.

S. 42, Fußnote²)

statt $r_{n+1,k} = r_{ik}$ lies $r_{m+1,k} = r_{1k}$ statt Kerrektionen lies Korrektionen

S. 44, Z. 13 von unten statt $(x_i - \xi_k^2 \text{ lies } (x_i - \xi_k)^2$

p. 167, line 12 from above

replace
$$\frac{5}{4}$$
 by $\frac{7}{4}$

line 2 from below

replace
$$\sum_{m=1}^{m}$$
 by $\sum_{n=1}^{m}$

p. 171, line 5 from below replace $-\log \log \log x$ by $-2\log \log \log x$

p. 174, line 7 from above replace $p \in \mathfrak{S}$ by $q \in \mathfrak{S}$

p. 176, line 6 from above replace $b \in \mathfrak{S}$ by $q \in \mathfrak{S}$

p. 177, last line

replace
$$-\frac{1}{2}b(\log x) + \delta$$
 by $-\frac{1}{2}b(\log x)^{1+\delta}$

p. 181, line 15 from below replace Acad. by Inst.

p. 210, ligne 10 de dessous au lieu de antécédents à lire antécédents à t.

p. 255, paragraph beginning with "First we prove" replace by the following:

First we prove that one of two arbitrary principal chains is an initial interval of the other. [For a well-ordered set A the set A(a) of all elements of A preceding the element $a \in A$ is called the initial interval of A defined by a. Besides the (proper) initial intervals A(a) the set A itself is said to be an (improper) initial interval of A.] To prove the above proposition suppose H_1 and H_2 to be principal chains. If $h_1 \in H_1$, $h_2 \in H_2$ and $H_1(h_1) = H_2(h_2)$, then we have $h_1 = h_2$ by (*). Hence, if H_1 and H_2 have a common initial interval of H_1 and H_2 which is larger than H_2 . Consequently the union of all common initial intervals of H_1 and H_2 (which is one of these common initial intervals) cannot be proper in both H_1 and H_2 . — The above proposition proved thus implies that H^* is a chain, and that an arbitrary element h of H^* is preceded in H^* by the same elements as in any principal chain containing h.