Geometry in abstract distance spaces.*)

By DAviD ELLIS in Gainesville, Florida U. S. A.

Dedicated to my parents, Roy and Frances Ellis.

1. The literature on geometry in abstract distance spaces (sets bearing
distances which are not, in general, real or complex numbers) is quite scat-
tered and some of it is not readily available. An example of the latter.is the
work appearing by MENGER and TAUSSKY in Ergebnisse eines Mathematischen
Kollogquiums, Wien. Even when one bears in mind the fact that this field is
relatively undeveloped, a surprising number of mathematicians are unfamiliar
with it or even unaware of its existence. This is certainly in contrast to the
popularity of geometry in semimetric and metric spaces (this popularity will
undoubtedly be increased by the forthcoming textbook on the subject by
Professor L. M. BLUMENTHAL) which naturally leads to more abstract distance
geometry. It is an unforiunate state of affairs since there appear to be many
intimate links between abstract distance spaces and the topics of modern
algebra and topology.

It is hoped that the discussion given in this paper will, to some degree,
remedy these misfortunes. First we shall give a foreword on algebra and
topology and an introduction showing how the most fundamental notions of
geometry in abstract distance spaces are immediately obtainable as generali-
zations of the corresponding notions in the geometry of semimetric and
metric spaces. Later we shall examine other geometric notions applicable to
abstract distance spaces some of which seem of even more interest when
presented in the abstract fashion than in the classical case. Finally, we shall
give a survey of the distance-theoretic results obtained up to the present for
the special types of abstract distance spaces which have been studied. In
this part we have tried to mention the persons responsible for results of
importance.

*) The writer is indebted to Tieor SzerLe for his careful reading and correction of
this paper and his original interest in the paper which led to the present mode of its
publication.
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2 David Ellis

The terminology connected with semimetric and metric spaces begins,
of course, with FRECHET, HAUSDORFF and MENGER. Much of the terminology
of the present author derives from that employed by L. M. BLUMENTHAL.

The author wishes to extend his thanks to Professor MAURICE FRECHET
for his reading of the manuscript and for his many helpful suggestions for
its improvement.

2. List of special symbols. In this paper we employ the following
logical symbols most of which are due to E. H. MOORE:

3 is read “there exist(s)”

3l is read “there exist(s) uniquely”
.). or :): is read “implies”
.~ . is read “if and only if”

\ is read “and”

is read ‘‘or (conjunctive)”

v is read “or (disjunctive)”

, is read “such that”

V is read “for all”.

Set theoretic cross cut, union, and inclusion (in the wide sense) are
denoted by An B, AuB, and A cB, respectively. Class membership is de-
noted by a€ A (read “a is an element of A”). The symbol {x|P} denotes
the set of x having property P.

Negation of a relation is denoted by a stroke as in AcB (read “A is
not part of B”).

3. Foreword on algebra and topology. In this foreword we define
briefly and in a unified fashion some of the standard terms from algebra and
topology which appear in the following discussion.

A composition set C is a set admitting one or more (not necessarily a
finite number) of operations, where by an operation we understand any func-
tion on C* to C’ with possibly auxiliary variables from sets A,A,... A, in-
volved (i, j, k any cardinals). This definition of composition set includes all
of the familiar systems of modern algebra and topology (groupoids, vector
spaces, topological spaces, lattices, etc.). An operation on C* to C’ which
does not involve auxiliary variables will be termed a k-ary, j-valued opera-
tion (when k==2, j=1, the operation is called a binary single-valued ope-
ration). If C admits only operations for which j=1 and k is finite, then C
is called an algebra. (This is a very broad definition of algebra and should
not be confused with the concept of algebra employed in structure theory
as a vector space with ring multiplication over a division ring or field.)

Consider an algebra G admitting a binary single-valued operation ab.
Such an algebra is called a groupoid. A groupoid is commutative, associative,
or idempotent according as axb=bx%a, ax(bxc) = (axb)%c, or axa=a
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(Va, b,c€Q), respectively. If 3e€Gsexa=a*e=a (Vac@G), then e is called
a unit element for axb. A unit element in a groupoid is unique when exi-
stent. An associative groupoid is usually referred to as a semigroup. If G has
the property that when any two elements in a%b==c are given the third is
uniquely determined, then G is called a quasigroup. A quasigroup with a
unit element is called a loop. A loop which is also a semigroup is called
a group. One may show that a quasigroup which is also a semigroup is a
group. We denote the operation in a group by a--b and the unit element
by 0. It is easily shown that if G is a group a€G-)-31—a€G, a+(—a)=
— (—a)+a=—0. One writes a—b for a4 (—¥b). A group which is commu-
tative is usually called an abelian group. If G is a group and H is a subset
of G which is itself a group with respect to the operation of G, then H is
called a subgroup of G. Let H be a subgroup of G and a€G. The set
{ax|x€HY} is called a (left) coset of H. The index of H in G is the cardinal
number of the class of mutually pairwise exclusive (left) cosets of H. The
order or period of an element of a group G is the smallest positive integer n for
which the “sum” of n of the given elements is O; that is, na=a-4-a-+...+a
(n “‘summands”™)=0. A mapping of the type x’=x-+4a of a group onto
itself is called a (right) franslation by a. A mapping x'=a —x is called a
reflection in a. A group is called cyclic if it consists exclusively of the “mul-
tiples” (by positive integers) of a single element.

Let A be an algebra admitting two binary single-valued operations,
a-+ b and ab. One says that ab is distributive over a-b if a(b+4c)=ab+ac
and (a+4b)c=ac+bc (Va,bccA). If A forms an abelian group under
a-+b and ab is distributive over a-+b and A is associative with respect to
ab, then A is called a ring. A ring is commutative or is a ring with unity
according as it is commutative with respect to ab or has a unit element 1 with
respect to ab (of course, an arbitrary ring is not necessarily either commu-
tative or a ring with unity). A ring with unity for which ab=0.).a=0"b=0
is called a division ring. A commutative division ring is called an integral
domain. A commutative ring with unity whose elements other than O form
a quasigroup under ab is called a field

Let L be an algebra admitting two binary single-valued operations,
aVb and aAb. If L is associative, commutative, and idempotent with respect
to both operations and if avVb=a.~.aAb=>, then L is called a lattice.
A partial ordering (binary, retlexive, antisymmetric, transitive relation) in which
l.u.b. and g 1. b. exist for arbitrary finite subsets may be introduced into
a lattice by defining a < b.~.aVvb=>. If a lattice is such that one operation
distributes over the other, it is easy to show that the second operation also
distributes over the first. Let L be a lattice with unit elements O for a\Vb
and 1 for aAb. If x€L.)-IX'€L;xAxX=0/xVvx =1, then L is called
complemented. A distributive, complemented lattice is called a Boolean algebra
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and it is seen that in a Boolean algebra, complements (of elements) are
unique.

We next consider the introduction of a topology by methods closely
resembling those of algebras. Let 7 be a set and n be an element fcrmally
distinct from the elements of 7. Suppose that 7*= 7'u (n) is a composition
set admitting an N,-ary, single-valued operation, lim a,. Then one says that

¥t 08

a topology is defined in T by lima,. If a, is a sequence of elements of 7

il =» 00

it is called convergent or non convergent according as lima,€ T or lima,=n,

respectively. 7 is called a fopological space. 1f AcT and 3a,€A(Vn)sa;
4 a; (i4j)" lima,=a’a€T, then a is called an accumulation element of A.

L R -]

The set of all accumulation points (elements) of A is called the derived set
of A and the set-theoretic sum of A and the derived set of A is called the
(topological) closure of A. The closure of A is written A. A is closed if A=A.
A is open if the set-theoretic complement of 4 in T is closed. A is dense
in Bc T, if BcA. Various other topological notions (connectedness, local
connectedness, etc.) may be defined in terms of open and closed sets.

The other usual methods (other than MOORE-SMITH convergence) of
defining a topology may be accomplished by the preceding method provided
the axiom of choice is allowed. Of course, strong restrictions must be placed:
on the operation lima, in order to reach the more familiar types of topo-

"=+ 00
logical spaces (FRECHET class L, HAUSDORFF spaces, KURATOWSKI spaces,
metric spaces, etc.).

4. Introduction. Let S and G be abstract sets and suppose there is:
a single-valued function d(x,y) on 8* to G. S is then called a distance space
over G and G is called the ground set of the space S. (We are guided n
this terminology by the terminology associated with normed linear spaces.)
The function d(x, y) is called the distance function or, more simply, distance
in S. A ground set G and the set of all') distance spaces over G constitute
the distance space category over G. We denote the category of all distance
spaces over G (subject to the restriction noted in footnote’) by D(G). An
arbitrary ground set and its distance space category form a basis for distance
geometry in its most general form. As one would expect, however, no resuits.
of interest may be obtained without further assumptions (that is, no results
of interest for distance geometry). It is necessary, in general, to restrict both
the ground set and the “allowable” type of distance function in order to

1) Of course, a restricted domain of discourse must be chosen whose subsets are
the point sets of elements of P (G) in order to avoid the familiar paradoxes of set theory.
This is due to the obvious fact that any given set may be made into a distance space
over any given non-null ground set.
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obtain desirable results. If the ground set G is fixed, then restrictions on the
“allowable” type of distance function obviously yield subcategories of D(G).
In certain of these subcategories over a properly chosen ground set, many
of the familiar notions of the geometry of semimetric and metric spaces may
be generalized in a straightforward fashion.

Many of the most interesting problems in distance geometry are con-
cerned with those elements of D(G) whose point sets are G itself. Such
spaces we shall call ground spaces. Thus, most of the ‘‘characterization pro-
blems” are concerned with characterizing, by means of distance-theoretic
notions, the ground set bearing a suitable distance function among other
distance spaces over the ground set. Also, the ground set often bears an
algebraic structure and the inter-relations between the algebraic and distance-
theoretic properties are of interest.

Throughout the paper, R, €, and N°, denote the real field, the complex
field, and the set of non-negative real numbers, respectively.

The fundamental noticns appearing in the geometry of semimetric and
metric spaces may be found in the original papers of KARL MENGER [20]3)
and in L. M. BLUMENTHAL’s book [4]. -

5. Congruence and congruence classes. Two elements S and S*
of ©(G) are said to be congruent, written S~ 8", provided there is a biuni-
form mapping (biuniform correspondence), f: S—»S*, of S onto S* so that
for x, y€S we have d(x,y)=d(f(x), f(»))?). Congruence is an equivalence
relation (that is, a reflexive, symmetric, transitive, binary relation) and divides
the elements of any subcategory of D(G) into congruence classes. If it is
desired to specify the particular mapping f which establishes congruence
between S and S* (and which is called a congruence between S and S°) we
write S=S*(f) or S*~S(f'). The distance geometry associated with any
subcategory of D(G) is the study of those properties common to all elements
of a congruence class in the given subcategory; that is, the study of con-
gruence invariants if we wish to emphasize the mapping aspect of congruence
rather than the equivalence class aspect. Of course, this is a very strict
definition of distance geometry in accordance with KLEIN’s Erlanger program,
and it is usual to include under the heading of distance geometry other
properties of distance spaces which are associated with congruence invariants.

6. Distance sets, generalizations of congruence. If S€D(G), the
distance set, D(S), of § is the set {x€G|3a, b€S,d(a, b) =x}. This notion,
of much intrinsic interest, is useful in formulating a certain generalization
~of the notion of congruence as is done in the next paragraph.

2) The numbers in brackets refer to the bibliography at the end of this paper.
3) We use the same functional notation for the distance functions in S and S* since
these are distinguished by the context or by their arguments.
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There have been two generalizations of congruence suggested, in addi-
tion to the possibility of similarity mappings between distance spaces over
ground sets which are not necessarily identical, and we examine these now.
L. M. BLUMENTHAL has suggested what we term multi-valued congruence as
follows: Let S, S*€ D(G) and suppose there is an exactly 1-to-k mapping of
S onto S*, f:S> S*, with the property:*).

X, y€S-)-3x"€f(x), Y €/(3),d(x ,y) = d(x', y).

An example of multi-valued congruence in the case k=2 is given by the
point to diametral point pair mapping of the E,, (2-dimensional elliptic space
of space constant r) onto the S,, (convexly metrized two-sphere of radius r).

The writer has suggested the notion of distanciallity as follows: Two
elements S, S*€D(G), are said to be distancial, written S = 8* (mod D), pro-
vided D(S)= D(S*). The notions of distanciallity and of multi-valued con-
gruence compare as follows.

1. Multi-valued congruence replaces the single-valued mapping of con-
gruence with a multiple-valued mapping while distanciallity is completely
free from the notion of mapping and, hence, from any a priori restrictions
on the cardinal numbers of spaces considered. (That is, spaces with different
cardinal numbers may be distancial).

2. Distanciallity is again an equivalence relation while multi-valued con-
gruence is non-symmetric, in general, for k == |. Thus, one might say that,
multi-valued congruence is a set-theoretic generalization and distanciallity is
a primarily algebraic generalization of congruence since the subject of equi-
valence relations and equivalence classes is of much importance in modern
algebra.

One may also define a relation of similarity between S¢€D(G) and
S§'e€D(G’) as follows: Let f:S~>S" be a single-valued mapping of S onto S*
with the property.

If @,b,c,d€S then a,b=c,d-)-f(a),f(b), = f(c), f(d). Then S and S*
are called similar distance spaces and the mapping f is called a similitude.

These three generalizations of congruence give rise to three geometries
in abstract distance spaces. The first two, which we shall call 1-to-k geo-
metry and distanciallity geometry, respectively, relate to a given distance
space category, while the last, similarity geometry, applies to any class of
distance spaces. None of these generalizations will be considered further in
this paper.

7. Superposability properties and the group of motions. Let
S€D(G). A motion of S is a congruence of S with itself. Two subsets
S’ and S® of S are said to be superposable, written S’ ~S*, provided

4) See the list of symbols in Section 2.
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there is a motion of S mapping S’ onto S*. Superposability is an equivalence
relation in the Boolean algebra of subsets of S (the subsets of any set form
a Boolean algebra under the set-theoretic operations). Clearly, $’~5%.).8' =S".
However, the proposition §'=8".).8’~S* is not, in general, valid. S is said
to have the property of k-point superposability provided that if S and S*are
subsets of S having k& points each and S = S’ then §'=8". S is said to
have the property of free mobility provided that for any two subsets, S” and
S*, of S, §’=8*(f) implies §'~8"(g), where f and g agree on §’; that is,
for any congruent mapping of one subset of S onto another there is a mo-
tion of S which induces the original congruence between these subsets.

The motions of S obviously form a subgroup of the group of point-
permutations of S. It is referred to as the group of motions of S and written
G&(S). G(S) is said to be simply transitive, k-tuple congruence transitive, or
completely congruence transitive, according as S has the property of 1-point
superposability, k-point superposability, or free mobility, respectively.

8. Congruent imbedding. As remarked in 5, the relation of congru-
ence divides the elements of any subcategory of ©(G) into congruence clas-
ses. It is frequently of interest to determine conditions under which elements
of a subcategory of D(G) will lie in the congruence class of a given space
or will lie in a congruence class with a subset of a given space. These two
problems are described (after BLUMENTHAL) as the space problem and the
subset problem, respectively.

Lat S, S*¢D(G). § is said to be congruently contained in S* or merely
(congruently) imbeddable in S* provided S is congruent to a subset of S*. |
S is imbeddable in §* we write SCG S°.

Let S€ED(G) and K(G) C D(G). A solution of the space problem for
S in R(G) is given by conditions, expressed only in terms of distances and
notions derivable from distances, which are necessary and sufficient in order
that any given element of &(G) which satisfies these conditions be congruent
with S. A solution of the subset problem for § in R(G) is given by condi-
tions, expressed only in terms of distances and notions derivable from dis-
tances, which are necessary and sufficient in order that any given element
of ®(G) which satisfies these conditions be congruently contained in S.

It is, of course, possible to solve the space problem for S by solving
the subset problem for S in the given subcategory and then characterizing S
(in terms of distances) among its subsets. This was, in fact, the approach
to the space problem for E, (n-dimensional Euclidean space) among semi-
metric spaces as originally solved by KARL MENGER [20].

Of aid in studying the subset problem are the notions of congruence
indices and congruence order. Let S€D(G) and K(G) CD(G). S is said to
have congruence indices (n, k) in &(G) provided that any element of (G)
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having more than n<k pairwise distinct points is" imbeddable in S whene-
ver each n of its points are congruently contained in S. A space having
congruence indices (7,0) ((n, 1)) in &(G) is said to have congruence order
n (quasi-congruence order n) in {(G). (In these definitions k& and n are any
cardinals). If S has congruence order n in &(G) and does not have this pro-
perty for any cardinal less than n then n is called the best congruence order
of S in &(G). The obvious value of having a congruence order of S in &(G)
is that the subset problem for S in &(G) is reduced to finding conditions
under which subsets of cardinal not exceeding the congruence order of ele-
ments of {(G) are imbeddable in S. It is also convenient to make the spe-
cial definition: S has hyperfinite congruence order in t(G) provided S does
not have any finite congruence order in &(G) but any eiement of S(G) is
congruently contained in § whenever each of its finite subset are imbeddable
in S.

The totality of space and subset problems for the elements of a dis-
tance space category is referred to as the class of characterization problems
for the category. The class of characterization problems for the category of
semimetric spaces has been the subject of a great deal of the literature on
classical distance geometry [4].

9. Restrictions on ‘“‘allowable” distance functions. We now obtain
subcategories of D(G) by considering those elements of D(G) whose dis-
tance functions satisfy further restrictions. Of course, these subcategories al-
ways exist either properly or as null sets. Whether or not a given subcate-
gory exists non-null depends on the restrictions demanded, the ground set,
and the universe of discourse (as mentioned in footnote?)).

The subcategory €(G) of D(G) consists of those elements of T(G)
whose distance functions satisfy the condition of

Symmetry: d(x,y)=d(y, x) (Vx, y).
The subcategory V(G) of D(G) consists of those elements of D(G)
whose distance functions satisfy the condition of vanishing:

d(x,x) =d(y,y) + d(x,y) (Vx, ysx ).

Since G is an abstract set (in general) we agree to identify the ele-
ments d(x, x) one of which is defined by each element of B(G). The resul-
ting element is labeled O and G is called a zeroidal ground set when one
of its elements (and only one) is labeled O. We may then state the condi-
tion on the distance functions of the spaces in V(G) as
Vanishing . d(x,y)=0 if and only if x=y.

The set-theoretic cross cut S(G)nV(G) is denoted by N(G) and its
elements are called generalized semimetric spaces. The name obviously deri-
ves from the fact that symmetry and vanishing are precisely the conditions
imposed on those elements of D(N*) which are called semimetric spaces.
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Most of the distance spaces of interest are in 9(G). Examples to the cont-
rary are

1. The directed ray of analytic geometry is in B()) but not in ES(N).

2. The complex (Euclidean) plane is in €(€) but not in T(C).

If S is a ground space in N (G) whose distance function satisfies the
condition of

Normality: d % 0)=x% (VxeS)

then S is called a normal ground space over G. The prototype of ground
spaces; namely, R* bearing the Euclidean metric, is a normal ground space
over R°.

10. Restrictions on the ground set. A ground set is called algebraic
if it forms a groupoid under a commutative operation a-+b6. If G is an al-
gebraic ground set we may define for the elements of D(G) the notions
(which are of great importance in classical geometry and the geometry of
metric spaces) of betweenness and convexity. Let a, b, c€ S€D(G). One says
that b is between a and ¢, written (abc). provided d(a, b)+d(b, c)==d(a,c).
This is betweenness in the broad sense. Betweenness in the strict sense,
written (abc)’, demands that (abc) subsist and that a, b, ¢ be pairwise distinct.
Most of the literature dealing with betweenness in semimetric and metric
spaces employs the strict notion. However, the broad notion of betweenness
seems better adapted to more general distance spaces. It should be noted
that (abc) and (cba) are equivalent propositions (as demanded by intuition)
only because the groupoid on G has been assumed commutative. S is called
convex if |

a,c€S a+c-)-1b€S;5(abe)® subsists.
S is called externally convex to the right provided
a, beSa-b.)-IceS;s(ar)’ subsists.

External convexity to the left is defined in an obvious similar fashion. If §
is externally convex both to the right and to the left it is said to be exfernaily
convex. :

If S*<S, itis sometimes desirable to consider the set-theoretic product
of all convex subsets (if any) of S which contain §*. This product is*also
convex and is called the convex closure (convex cover, convex extension) of
S* and is written S. It does not, of course, exist for arbitrary S and S".
Similar products may be defined to yield “closures* externally convex to
either side or to both sides provided the appropriate subsets exist.

Suppose now that G is algebraic and is partially ordered (see 3) by
=. By definition a=b.~.b=a and a<b.~-a=a"a+b. We denote by
T(G) the subcategory of D(G) whose elements have distance functions
satisfying the
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Triangle Inequality . d(a,b) +d(b c)=d(a,c).

The distance spaces of greatest interest in the classical case (d. h.
G = NR") are those in the set-theoretic product N(G)nT(G) (assuming also
that G is zeroidal as it is in the classical case). If O is the first element
(O denotes the O element of the vanishing condition) in the partial ordering
of G by = we say that any element of T(G)nN(G) is a generalized metric
space and we denote this product by M (G).

If G is any partially ordered set then numerous ‘natural” topologies
are defined in G each of which induces a topology (except for uniqueness
of limits) in every element of D(G) as we shall see shortly. This matter
has been considered by FRecHET [12], [13], ApperT [1],[2], CoLmEZ [5], [6],
and Doss [7], [8]. For the numerous topologies usually employed in partially
ordered sets one may consult GARRETT BIRKHOFF’'s book [3].

11. Distance topology. Let G be a ground set in which a topology,
lim a,, is defined and let S be any element of ©(G). S in endowed with

-

a topology (with the exception previously noted), called its distance topology,
be the following definition: Let a,,a.,... be a sequence of elements of §,
then lim a,=a€S .~ lim d(a,a,)= 0 (assuming G zeroidal). We note once

n—»00 H->00

again that this distance topology may not be a topology, strictly speaking,
in the sense of Section 3, since this definition may fail to assign unique
limits (as is the case in some classical semimetric spaces which are not
metric). Additional restrictions both on the topology in G and on the distance
function of S are necessary in order to assure unique limits in the distance
topology of S. Additional restrictions of various types on the topology of G
and the distance function of S obviously imply restrictions, in general, on
the distance topology of S.

If S,S*€(G), where G is topologized and zeroidal, and if S= S it
is clear that § and S* are homeomorphic in their respective distance topologies.
(assuming these are single-valued) where by a homeomorphism we mean any
biuniform mapping of one onto the other which preserves accumulation
elements in both directions. If S and S* have the same point set and are
homeomorphic in their respective distance topologies by the identity mapping,
we say that the distance functions of S and S* are topologically equivalent.

If D(G) has a topologized, zeroidal ground set which is partially
ordered and S€D(G) we may define completeness in the sense of FRECHET
[4] for the distance topology in S (or for an arbitrary topology in S with G
merely partially ordered and zeroidal) by defining CaucHy sequences of Sin
the obvious way. Other topological notions which apply to elements of D(G)
when G is topologized and zeroidal were mentioned in Section 3.

12. Path length. Let C be a chain (simply ordered set) and G arbitrary.
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If C°cC and f:C*'>S"'cSe¢D(G) is a single-valued mapping of C* onto
S* then 8" is called the path by f of C* in S. Suppose now that G is
zeroidal, algebraic, and partially ordered. Denote by P any finite subset
Py, ..., pa of C* written in its order in C and denote by {P} the class of
all such P. If §* is the path by fof C* in S, the path Iength of 8%
L{.%(S") is defined to be

l. ?}b 22: d(f(p_), f(p)) provided this 1. u. b.
P 1=

exists in G. This definition may be extended, in the case where G is also
a groupoid under a second commutative operation, in the obvious fashion
to give an (upper) path integral of any single-valued function from a path
in S to G. A lower path integral would be obtained by taking g.1. b. rather
than l.u. b. and a theory of curvilinear integration may thus be developed
in an extremely broad setting. To make this procedure more clear we list.
the proper definitions. Let G be as above and closed under a second binary
single-valued operation ab. We shall assume (since it appears to be the
case of most interest) that G is commutative under ab. Let C, S, C*, and
S* and f be as above. Let g be a single-valued function on S* to G. We
define the upper and lower path integrals of g over S*=f(C") as

@g=1un > g(/(p) do and (z)[gwl . 3 g (7 (P) s
where a’,._,‘i in both definitions stands for d(f(p,-_l),f(p,-)).

One also sees how, using path integrals, one might define an integral
of a function defined over an arbitrary subset of S as in the last paragraph
by considering 1. u. b. and g.l. b. of the path integrals for all possible paths
in the arbitrary set. If G contains a unit element 1 for the operation ab (as
in the last paragraph) one may define, as usual, characteristic function of a
point of S and a theory of measure (measures being elements of G) might
then be developed using the integral of the characteristic function of an
arbitrary set over that set as the measure of the set. A theory of measure
has not, to the best knowledge of the present writer, been developed in this
particular fashion even for a general metric space where the measures would
be real numbers, although E. J. McSHANE uses a Lebesgue integral defined
without use of the concept of measure (other than that of an interval) to
define measure as the integral of the characteristic function in Euclidean
n-space in his book on integration.

13. Some special notions associated with ground spaces. If G is
an algebra (as defined in Section 3) and G forms a ground space in D(G)
under a distance function which is defined in terms of the operations already
extant in G, we say that G is an algebraically metrized ground space. An
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obvious problem of interest in an algebraically metrized ground space is the
study of relations between algebraic properties of the original operations in
G and distance-theoretic properties of the distance function in G Examples
of algebraically metrized ground spaces are the naturally oriented groups
and autometrized Boolean algebras considered in 19.

If-G is any ground space, then G forms a groupoid under its distance
function d(x,y). We call this groupoid the metroid of G. It appears that
there may be a particularly close association between the classical algebraic
‘properties (commutativity, possession of a unit element, possession of inverses,
nilpotency, etc.) of the metroid of G and distance-theoretic properties of G
considered as a distance space. The present writer hopes to make a study
of these relations in the near future.

Let G be a ground space in S(G). G is said to admit reflection in
x € G provided _
¥€G-)-Ny' €G.y £y dx,y)=d(x,y)d(y',2") =d(y,2); Vy,2€CG" y + x.
That is, there is a motion of G leaving only x fixed and such that all other
elements are equidistant with their respective images from x. The latter
requirement is evidently satisfied automatically whenever the first is, since, if
a motion of G leaves x fixed, then y and its image must be equidistant
from x. Thus, reflections may be regarded as motions which leave exactly
one element fixed. The subject of motions which leave one or more points
of a distance space fixed may well prove of interest as it has done in the
case of topology where many studies have been made concerning homeo-
morphisms of topological spaces into or onto themselves which leave certain
subsets fixed. :

One of the spaces which we study later (see 19) is the autometrized
Boolean algebra. This is a ground space and its distance function possesses
a very unusual feature which we call the property of triangular fixity. A
ground space is said to have the property of triangular fixity provided
d(a,b)=c.)-d(a,c)=b"d(b,c)=a. That is, in words, two arbitrary points
of the space and the third point which is the length of the original “segment”
form a triangle each vertex of which is the length of the opposite side.

14. Other noticns of distance-theoretic importance. Let S€2(0).
A set §*c S is said to be a metric base for S provided that if f is a function
on S8 to G there is at most one element, w, of S for which d(w,s)=f(s);
VscS™ Thatis, in words, there is at most one element of § having distances
from the elements of S* agreeing with a preassigned set of elements of G.
If there is exactly one such element for each set of preassigned elements of
S, we say that S* is a complete metric base for S. In the latter case, one
sees that the distances of a point of S from the points of S* (taken in some
fixed order) constitute a set of coordinates in S which may be referred to
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(as in the classical case) as metric coordinates in S. Metric bases have
proved of much interest in classical spaces and in metric spaces. We mention
here an interesting conjecture, unproved at the present, due to Mr. JERRY
GADDUM to the effect that in a metric space any equilateral set containing
the maximal number of elements (that is, any maximal equilateral set) forms
a metric base for the space provided the space is complete and convex. We
remark, however, that is seems probabie that external convexity is also required
in addition to completeness and convexity to make this conjecture valid.

Let S€D(G). S is said to be irreducible over G (irreducible over the
ground set) if every element of G is taken on as a distance in S. That is,
S is irreducible over G if G = D(S). In the classical case, the present writer
has conjectured that every compact metric space which is irreducible over
R" (the non-negative real ray) contains a non-degenerate continuum (com-
pact, connected set of more than two distinct elements). This conjecture is
also undecided, but a simple example may be constructed to show that the
conjecture is not valid if the restriction of compact be dropped.

Let S€2(G) and D(S) be, as usual, the distance set of S. S is said
10 be distancially irreducible provided there is no proper subset S* of S with
D(S*)==D(S). That is, in words, S is distancially irreducible provided the
deletion of any point of S diminishes the distance set of S. This property
would appear to be of interest in connection with the formal study of distance
sets. That is, the problem of realization of a distance set (given a distance
set does there exist a space of a required type of which the given set is the
distance set) has, in general, multiple valued solutions each solution being
distancial to each other solution. One naturally inquires then as to the
possibility of a minimal realization of a given distance set, or, equivalently,
a minimal representative of a distanciallity class, minimal being in the sense
of distancially irreducible.

A definition with applications to the study of the subset problem is
that of pseudo-S-set. Let S€D(G) and W(G) be a subcategory of D(G) in
which S has best congruence order n>1. An element S*€11(G) is said to
be a pseudo-S-set if each n—1 points of §® are imbeddable (congruently
imbeddable) in S but S*E S.

The congruence indices (see 8) of a space in a category of spaces
over the same ground set are considered to be ordered lexicographically.
Thus the best congruence symbol (a notion due to L. M. BLUMENTHAL) is
obtained by minimizing first the first number and secondly the second number
in a set of congruence indices. It should be noted that the first number of
the best congruence symbol is not necessarily the best congruence order
even when both are defined.

Let S¢D(G) and S’ and S’ be two subsets of S. S* is said to be
coverable (congruently coverable) in S by S’ if there is a motion of S sending
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S’ into 8” so that S*c S”. It should be noted here that, in general, S* & S’
does not imply S* coverable by S’ in S although the converse proposition
is always valid. If, however, S has the property of free mobility, then S*&E S’
does imply S* coverable in S by §".

Let S€eD(G). S is said to be metrically irreducible provided there is
no proper subset S*c S with S* = S The property of being metrically irredu-
cible is not universal even in the classical cases. For example, the real
Hilbert space is congruent to one of ils proper subsets. LINDENBAUM has
proved, however, (see reference given in [4]), that no subset of a compact
metric space which is both an F; and a G; [4] can be congruent to a
subset of itself. LINDENBAUM uses the term monomorphic rather than metri-
cally irreducible.

Let S,S"€2(G). S and S* are said to be metrically compatible pro-
vided SES"'S*"ES-)-S~S8°. Obviously, two distance spaces with the
same ground set are metrically compatible provided one of them is metrically
irreducible. A category in D(G) is called metrically compatible if each two
of its elements are metrically compatible. Thus a subcategory of D(G) is
metrically compatible if all save possibly one of its elements are metrically
irreducible. The notion of compatibility is also of interest in the topological
case (where homeomorphism replaces congruence). For example, an unsolved
problem is whether or not FRECHET’s space E, is homeomorphic to the real
Hilbert spice although it is known that each is topologically imbeddable
in the other.

Finally, we mention in this section the metrization problem. Suppose
that D(G) has a topologized ground set. Let S be a topological space (either
a Fréchet limit class or some other variety such as a Hausdorff space). The
metrization problem consists in giving necessary and sufficient conditions that
a topological space of a given type be homeomorphic to an element of D(G)
‘bearing its distance topology (assumed again to yield unique limits). Of
course, these conditions are to be stated in terms of concepts definable from
the topology of the given type of topological space. The metrization problem
is a special case of a wide class of problems which inquire what topological
properties imply certain distance-theoretic properties up to homeomorphism.
An example of one of these problems, other than the metrization problem
itself, in the classical case is KARL MENGER’s convexification problem. Na-
mely, what topological and metric properties must a metric space possess
(other than convexity itself) in order that it be homeomorphic to a convex
metric space?®) No attack has been made on the metrization pfoblem in the

5) A solution of the metrization problem giving necessary and sufficient conditions
(previously unobtained) in order that a regular Hausdorff space (not necessarily satisfying
a countability axiom) be metrizable has been obtained by R. H. Bixa, (Bull. Amer. Math.

Soc., 56 (1950), p. 53 contains an abstract of this result), E. E. Moise and R. H. Bixg,
‘working independently, have recently solved the convexification problem.
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case of ground sets which are merely topologized, but a study has been
made of the special case where the ground set is a particular type of group

[15]. o

013} The author has tried in the preceding part of this paper to give merely
an indication of a few of the classical notions which have meaning in ab-
stract distance spaces (with restricted ground sets in general). There are, of
course, others too numerous to mention here. It is also to be expected that
the study of abstract distance spaces rather than more familiar types will
yield many notions heretofore unconsidered - because of their failure to exist
in the more familiar spaces. In fact, this is already the case for triangular
fixity as defined above. Although this notion is definable in any ground space
and is a very simple and obvious possibility, it was not previously conside-
red because none of the spaces under study had the property of triangular
fixity. It would possibly be of interest to enquire as to what familiar condi-
tions, if any, are placed on a metric space whose point set is the non-ne-
gative real ray by the property of triangular fixity.

15. A preface to the results. In the following part of this paper we
.give a survey of the results, other than in the classical case, which have
been obtained up to the present in studies concerned with the geometry of
abstract distance spaces. This section contains a few preliminary remarks to
this survey.

Several studies have been made of distance spaces in which the pri-
mary aim is considerations of a purely topological rather than distance-theo-
retic nature. The ground sets in these studies have been ordered groupoids,
ordered groups, chains, lattices, ordered fields, and classes of probability
functions. The last of these (19) begins a metric approach to the foundations
of chunk topology (topology without points). These studies are certainly of
much interest and may prove of aid in distance-theoretic studies concerned
with path integrals and related topics requiring ordering or topological con-
siderations. Since our major interest in this paper is, however, the
study of distance geometry proper we shall content ourselves with merely
giving references to the above mentioned papers. These are: G. B. PRICE [22],
‘O. H. Hyers [14], G. K. KauiscH [15], A. Appert [1],[2], R. Doss [7], [8],
‘MAURICE FRECHET [12], [13], JEAN CoLMmEZ [5], [6], W. KRULL [17], and KARL
MENGER [19].

Studies concerned with distance geometry proper (and closely related
topics) have involved four types of ground sets. These are groups, Abelian
groups, fields, and Boolean algebras. In the case of arbitrary groups and
Boolean algebras, most of the work has been concerned with a particular
type of ground space. In the case of Abelian groups, most of the work is
on a space which is a ground space over the set of elements of the group
paired with their negatives. In the case of fields, most of the work concer-
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nes imbeddability of distance spaces over the field in vector spaces metrized
in a more or less Euclidean fashion over the field. Thus it is easily seen
that work has omly begun even for these special types of ground sets. It
seems probable that almost all of the classical theorems relating to metric
spaces can be carried over to the category Di(F) where F is an ordered field
and a study of analogous theorems for the category 9i(B) where B is a Boo-
lean algebra endowed with one of its natural topologies may well prove of
equal interest. We leave to the reader the suggestion of other programs of
research which are corollary to"the abstraction of the notion of distance and
distance space. .

16. Naturally oriented groups. Let G be an additively written group.
The point set of G is made a ground space in LB(G) by the definition
d(a, b)) = b—a. Following MENGER we call such spaces nafurally oriented’
groups. The naturally oriented group is obviously a direct generalization to arbit-
rary groups of the directed line of analytic geometry which is a naturally
oriented group on the additive group of reals. In G, d(a, )= —d(b, a) and
we denote by A(G) the subcategory of V(G) whose distance functions have:
this property of antisymmetry or skewness. The elements of A(G) are called.
(again after MENGER) G-oriented spaces. Naturally oriented groups and G-
oriented spaces have been studied by KARL MENGER [18], OLGA TAussky [24]
and KeESTELMAN and SmiTH [16].

The principal result obtained by MENGER is a solution of the subset
problem for G in A(G) as follows:

Theorem 16. 1. (MENGER) Let MEA(G). MG G-~-p,q, rT€EM.).d, p, ¢+
+d(r, p)+d(q, r)=0.

As a corollary we have: _

Corollary 16. 1. 1. The naturally oriented group G has congruence order
three in A(G).

The principal result of KESTELMAN and SmiTH (for our viewpoint) is a
theorem concerning distance sets in a certain type of set-theoretic decompo-
sition of G. This theorem we interpret as follows:

Theorem 16. 2. (KESTELMAN and SMITH) Let G, be a s bgroup of G
and suppose that G, has a subgroup G, of index k (k any cardinal) in G,.
Then G is the union of k disjoint sels, pairwise superposabie by (group) trans-
lation, the (set-theoretic) sum of whose distance sets does not intersect G,— G,
(set-theoretic difference).

The result of TAussky which has major significance for us is:

Theorem 16. 3. (TAussky) The (group) reflections of G are motions
of G if and only if G is either an Abelian group or a Hamiltonian 2- group ®)

%) A Hamiltonian 2-group is a group in which each non-zero element has period.
which is a power of 2.
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Theorem 16.3 makes it evident that the superposability properties and
group of motions of a naturally oriented group differ considerably, in general,
from those of a naturally metrized group as considered in 17. below.

OLGA TAussky has also considered similarity geometry for such groups
as naturally oriented groups and others with distances closely related.”) -

17. Naturally metrized groups. Let G be an additively written abe-
lian group and |G| the set of all unordered pairs (a, —a) for a€ G. We write
|a| for (a, —a) and identify |0] with 0. The elements of N(|/G|) are called
G-metrized spaces. The point set of G is made a G-metrized space by the
definition d(a, b) = |a—b| for a, b€ G. G bearing this distance function is called
a noturally metrized grovp and naturally metrized groups are obviously a
direct generalization to arbitrary abelian groups of the Euclidean line which
is a naturally metrized group on the additive group of reals. (Provided we
agree to identify @, —a with ordinary absolute value.)

Naturally metrized groups have been studied by KARL MENGER [18], [21],
OLGA TAussky [24], and the writer [11]%), and many results have been ob-
tained for these spaces.

We first make a few general remarks about distances in G which were
originally observed by MENGER. We say that |a| has the same order (period)
as does a. We denote by G, the subgroup of G consisting of all elements
of G whose orders do not exceed 2, by R.(b) (called the reflection of & in
a) the set '

Ra.(b) = {x€G|d(a, x) =d(a, b)},
and by S(a, b) (called the symmetral of a and b) the set
S(a, b) ={x€G|d(a,x)=d (b, x)}.
We denote by o(a) and o(|al), respectively, the orders of a and |a].

Remark. o(d)>2"a€G-)- b, c€ Gyd(a, b)=d(a,c) =|d|.

o(d)=2"a€G.)-3be€ G,d(a, b)=|d|.

Remark. a. b€ G/ o(d(a, b))>2"d e€G.).-3c€G,d(a,c)=d|"d(b, c) =
= lel.a, b€ G o(d(a, b))=2"c€G" min (o(d(a,c)), o(d(b, c)))>
>2.).-3c’€Gyec+c’/d(a, c)=d(a,c) db,c)=d(b, c’).

Remark. R.(b) contains at most one element; Va, b€ G. a, b,c€G"Rq(c)
non-null” Ry(¢) non-null.).-d(R.(c), Ru(c)) = |2(a—0b)|.

Theorem. 17. 1. (MENGER) a,b€ G/ a=b-)-S(a, b) null’S(a, b) = G,.
If G=G, and a-+b then S(a, b) is null. If G is a cyclic group of odd order
then S(a, b) = G, for a-b. '

) OneA Taussky, Uber dhnliche Abbildungen von Gruppen, Ergebnisse eines Math.
Koll. (Wien), 3 (1931), 13—14.

8) The author wishes to take this opportunity to make the following correction of
a typographical error in this paper [11]: On page 639 in the 5th paragraph, third line,
“for all a,be G” read “for all a,beS".

D2



I8 David Ellis

We now examine the superposability properties of G. They have been
studied by MENGER and the writer. The results are:

Theorem 17. 2. (MENGER) If a, @' € G, a+=a’ there are exactly two mo-
tions of G sending a into a’ (namely, X’ —=a'+x—a and X’ =a’'—x+a)
unless G = G, in which case these two motions coincide.

Theorem 17. 3. (MENGER) G has the property of two point superposa-
bility. If a,b=a’, b" and a-=-b-==b" the motion superposing a, b and a’, b’ is uni-
que unless o(d(a, b)) =2 and G = G, in which case there are exactly two
such motions.

Finally we list the property of free mobility of G and give the structure
of the group of motions of G in terms of the structure of G.

Theorem 17. 4. G has the property of free mobility. 5(G) may be 0b-
tained as the extension of the group of (group) translations (xX'=Xx--a) by
the reflection in the origin (X = - x).

Theorem 17.4 was suggested, of course, by Theorems 17.2 and 17.3
and they may be obtained as corollaries to 17.4.

Characterization problems for naturally metrized groups have been stu-
died by MENGER, TAussky, and the writer. (The theorem of the author stated
below is previously unpublished).

Remark. (MENGER) Any G-metric space (G-metrized space) containing
not more than two elements is imbeddable (congruently imbeddable) in G.

Theorem 17. 5. (MENGER) Let p,,p,, ps€SE€N(|G|). The set p,.p,,
ps GG~ =11 i=1,2,3; may be chosen so that e,ry-e,rs+esr, =0
where |r;|=d(p, p); ,j=1,2,3.

Corollary 17. 5. 1. If G contains an equilateral triple the “edge length”
is order three.

Theorem 17. 6. (MENGER) The congruence order of G in the subcate-
gory of N(|G|) whose elements contain exactly four pomts and have at least
one distance of order 2 is 3.

Corollary 17. 6. 1. The distance set of a pseudo-G-quadruple constains
no elements of order 2.

Theorem 17. 7. (MENGER) Tne best congruence order of G in (|G|)
is four.

The preceding theorem may be sharpened by abandoning the notion of
congruence order as in

Theorem 17, 8. Let S¢N(|G|) and a, bES, a=b. If each quadruple
of points of S which contains a and b is imbeddable in G then SE G.
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Theorem 17. 9. (MENGER) If p,, Ps, s, P, form a pseudo-G-quadruple
in N(|G|) then 2r,=2ry, 2r3=2r,, and 2r,,=2ry where |r,;|=d(p,, p,);
i, j=12,3,4.

Theorem 17. 10. (MENGER) If ry, s, Ps, PG and n is a natural inte-
ger so that nry,=nry, nry=nry, and nr,=—nry, where |r;|=d(p, p);
i,j==1,2,3. 4; then the aistance set of this quadruple (p,,r., ps, p;) contains
an element of order n.

Theorem 17. 11. (MENGER) If G contains no elements of order 2 and
P, P2y Ps, Py are four points of an element of 3(|G|) and if each three points
of this quodruple are imbeddable in G, then the four roints form a pseudo-G-
quadruple if and only if d(p,,p)=d(ps,p), d(py,ps)=d(ps,p), and
d(ry, p)) =d(p,, ps).

Remark. (Taussky) If each three points of a G-metric quadruple,
P1, Psy Ps, Do, are imbeddable in G then a necessary (but not, in general, suffi-
cient) condition that the four points form a pseudo-G-quadruple is that 2r,=
=2y, 2rs=—2ry, and 2r,,=2ry, where |r;|=d(p, p;) §,]=1,2,3,4.

Remark. (TAussky) If each three points of a G-metric quadruple, p,, p,,
Ds, Py, are imbeddable in G then a sufficient (but not, in general, necessary)
condition that the four points form a pseudo-G-quadruple is that d(p,, p,)=
d(ps, ps), d(p,, ps' =d(p,, p)), and d(p,, p,) = d(p., p;).

From the two preceding remarks and Theorems 17.9—.17.11, it is seen
that the structure (distance-theoretic structure) of pseudo- G-quadruples is very
similar to that of pseudolinear-quadruples [20] as one would expect. The
following theorem, due to OLGA TAussKy, completely characterizes pseudo-
G-quadruples among G-metric quadruples (in (| G|)).

Theorem 17. 12, (TAussky) Let p,, p., ps, Py be a G-metric quadruple
(in N(|G|)) with d(p,p)=|r,|; i,j=1,2,3,4. A necessary and sufficient
condition that the quadruple be a pseudo- G-quadruple is that 2r;;==0; i, j=
=1,2,3,4, i+j; and it be possible to choose e;;=-—+1; i,j=1,2,3,4, i}
so that

€Tyt Coslys + €373 =0
€10l + ey ly + eyl = 0
€133 +€ 1l + €Ty =0
€3 Tos + oy Toy + €34Ty =0.

Theorem 17. 13. (MENGER) If G contains no elemenis of order 2 then
the quasi-congruence order of G in the subcategory of N(|G|) whose elements
contain no equilateral triples is 3.

Taussky has shown that the restriction of Theorem 17.13 that G con-
tains no elements of order 2 is unnecessary. Thus
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Theorem 17. 14. (TAussky) The quasi-congruence order of G in the
subcategory of (|G|) whose elements contain no equilateral triples is 3.

MENGER [21] has considered a generalization of path length in arbitrary
(not necessarily partially ordered) naturally metrized groups. It differs from
our generalization in 12 in that it assigns as path length not an element

but, in general, a subset of G. For |a,|,|a,|,...,|a,€|G| we define > '|a,|to
=1

be the set of 2" elements Z e,a; obtained by assigning to the e; the values
i=1

+ 1 in all possible fashions. If p,, p,, ..., p, is a chain (ordered set) of elements

n—1

of a G-metric set we assign as path length L(p,,...,p) =2 d (P, P
=1

For E any (finite) chain in any G-metric space it is immediate that L(E) is
its own reflection in 0 and is a congruence invariant. If F is a subset of E
with the points of F ordered as in E and F contains the endpoints of E
then L(F)c'L(E).

Suppose now that G is a topological group (G bears a topology in
which a—b is continuous and the underlying topological space is a FRECHET
limit class). It is also assumed that derived sets are closed in G. An arc in
G is any homeomorph of the unit interval [0, 1]. If the topology of G is the
metric topology of a metric space (that is, if G is a metric group) the usual
arc length, [(A), is attached to any arc A of G. (For a definition of /(A)
see [4]).

If B is an arc in G we define L*(B) as the union of all L(E) where
E is a finite subset of B carrying the order induced in B by the given
homeomorphism with [0, 1]. (It can be easily seen that this order is independent
of the homeomorphism chosen except possibly for a total inversion of order
by an interchange of the endpoints). We also require that all of the sets E
contain the endpoints of B. The length set (Lingenmenge), L(B), of the arc
B is then defined as the closure (in G) of L*(B).

The results, all due to KARL MENGER, are:

Theorem 17.15. If E, is a sequence of ordered n-tuples p;, ps, ..., pt of
points of G and E is an n-tuple p,,p., ..., p, of points of G with lim pf=p,;
k~» 00

i=1,2,...,n; then lim L(E,) = L(E).®) Path length of ordered k-tuples is a
k—+m

set-valued function which is continuous in the coordinate convergence of
ordered k-tuples.

9) Limit here is used in the sense of set theory. This means that L(E) has the
property any neighborhood of one of its points intersects all but a finite number of the
L(E,) and that any point whose every neighborhood intersects an infinite number of the
L(Ey) is contained in L(E.
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Remark. If B and B* are arcs in G with B ~ B* then L(B) = L(B").

Theorem 17.16. L(B) is an upper semicontinuous function of arcs in
G in the set-theoretic topology of subsets of G (see footnote"), here, of course
only lower limits are under consideration). More precisely, lim B,= B implies

L ]

L(B)c lim L(B,) where the first limit is in the sense of coordinate convergence

L -]
(the coordinates are given by the homeomorphisms defining the arcs) and the
second limit is in the sense of lower topological limit of a sequence of sets.

Theorem 17.17. If F is a subset of an arc B and is dense in B then
L(B) is the union (more precisely, the closure of this sum) of all L(E) where
E is a finite subset of F.

Theorem 17.18. Let [F,} be a sequence of finite subsets of an arc
Bc G, each carrving the order on B, each of which contains the endpoints

of B, with F,cF,,, so that the set-theoretic sum G F, is dense in B. Then

n=|

L(B) is the closure of G LE(E).

MENGER does not supply proofs of the foregoing theorems on length
sets in his paper [21]. The author has found, however, that they may be
verified in a straightforward manner.

Remark. An interesting unsolved problem is as follows: If B is an arc
in G is it necessary that 0 L(B)? An affirmative answer implies that
L(B') c L(B) provided B*c B.

Remark. Another interesting unsolved problem is as follows: Let G be
a melric group and B, B’ arcs in G. Under what conditions does L(B)— L(B")
imply [(B)==1(B*) and under what conditions does the converse proposition
hold? This question was examined by MENGER for the group of vectors of
the Euclidean plane. [21].

Remark. It seems probable that the foregoing theorems on length
should be of particular interest when interpreted in the special case of the
group of vectors of Euclidean n-space. This possibility is apparently un-
exploited.

In 17, we remark that the present author has recently made a study
of a modified type of distance set in naturally metrized groups. An abstract
of this study is to be found in the Proceedings of the International Congress
of Mathematicians, Cambridge, 1950.

18. Square-metrized vector spaces. OLGA TaAussky [23] has con-
sidered the following type of distance spaces: Let P be a field of characteristic
zero (non-modular field) and let P, be the n-dimensional vector space over
P whose elements are ordered n-tuples of elements of P. Define distance in
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P, by d(p,q)= Z(p —¢q)" The squares of the distances of elements in

the naturally metnzed additive group of P are then the distances of the elements in
P,. We call P, the n-dimensional square-metrized vector space over P. We
consider the category B(P) of S(P) whose elements satisfy the one way
vanishing condition: p=gq implies d(p,q)=0. The elements of B(P) we
call P-metrized spaces. A subset K of P, is linearly dependent if there are:
n—[—l elements e,,...,e,., of P, not all 0, so that for each xtK,

5 ex,+e,.,=—0. P is called a Pythagorean field if each sum of squares

in P is itself a square in P. P is called a square field if each element of P
is a square in P. For p,,...,p, elements of a P-metrized space we denote
by D(Po, Prs..+, Ps) the determinanl of order k41 whose element in the
ith row and jth column is d(p,, p;) bordered by a row and column of units
intersecting in 0. (We assume the existence of ! in P unless a definition of
field is used which includes this.)

The results, all due to OLGA TAUSSKY, are:

Theorem 18. 1. /n order that each finite P-metrized space be imbeddable
(congruently imbeddable) in P, for some n it is necessary and sufficient that
P be not formally real (that is, —1 is a sum of squares in P). If —1 is
the sum of u squares in P then every P-metrized space of n points is

imbeddable in P, where s(n)=(n—1)u+(3).
Theorem 18.2. If P is a Pythagorean field each linearly dependent
subset of P, is congruently contained in P,_, for n>1.

Theorem 18. 3. If P is a square field then

1. Every P-metrized (n--1)-tuple is imbeddable in P,.

2. In order that a P-metrized (n-}-2)-tuple be imbeddable in P, it is
necessary and sufficient that D(p,, ..., p,.,)=0.

3. A P-melrized (n--3)-tuple is imbeddable in P, if and only if each
of its (n-2)-tuples is so imbeddable and D(p,,..., p,..) =0.

4. P, has best congruence order n-+3 in B(P).

Remark. It is clear that the definition of distance in P, is analogous to
the square of the distance in the (real or complex) Euclidean n-dimensional
space. In fact, if P is a square field we may actually make a direct genera-
lrization of Euclidean n-space to P,. Theorem 18.3 abeve is exactly analogous
to the correspondine results for the Euclidean n-space when B(P) is replaced
by the more restrictive 9(P) [20). It seems probable, as remarked in 15, that
if P is ordered (or, for some purposes, merely topologized) a great many of
the classical results go through in these P-metrized spaces.

19. Autometrized Boolean algebras. The writer has considered spaces
(in particular, a certain type of ground space) over Boolean algebras [9], [10].
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We proceed as follows: Let B be a Boolean algebra (see 3) with meet, join,
complement, and inclusion (in the wide sense) denoted by aAb, aVb, a’,
and ac B, respectively. Define distance in B by d(a, b)=(a/Ab’) V(a’A\b)
(the so called “symmetric difference”). We call B then an aufometrized Boolean
algebra and it seen to be a normal ground space in N(B). It should be
noted that this definition of distance function is exactly the composition of
the additive group of the Boolean ring associated with B,'°) and hence re-
sults concerning distances in B may also be considered as results on the
additive group of a Boolean ring with unity. This yields a new link between
one of the more familiar types of algebras and an abstract distance space.
The results are:

Theorem 19. 1. B is a normal ground spuce in M (B).

Theorem 19. 2. Complementation yields a motion of B. No non-trivial
“translation” (meet by a fixed element other than I or join by a fixed element
other than 0'') is a motion of B.

Theorem 19. 3. Betweenness in B is equivalent to the lattice betweenness
of PITCHER and SMILEY '®).

Theorem 19. 4. If B is a normed (metric) lattice [3] then betweennes
as defined by the distance function in B is equivalent to betweenness as defined
by the (real) metric of B.

Theorem 19. 5. B has the property of free mobility.
Theorem 19. 6. B has the property of triangular fixity.
Theorem 19. 7.. Each point of B forms a complete metric base for B

Theorem 19, 8. If f is any motion of B then f(x')=f' (x); VxEB. In
words: any motion is an automorphism for complementation.

Theorem 19. 9. The group of motions of B and the group of (Boolean
algebra) automorphism of B have only the identity mapping in common

19y A Boolean ring (with unity) is a ring with unity in which multiplication is idem-
potent (see 3). M. H. Sroxe (Subsumption of Boolean algebra under the theory of rings,
Proc. Nat. Acad. Sci., 20 (1934), 197—202) has shown that a Boolean ring with unity is
-obtained from a Boolean algebra by defining a-}-b=(@ A V)V (@ A b) and ab—a A b,
and, conversely, any Boolean ring with unity may be obtained in this fashion from some
Boolean algebra.

1) 0 and I denote the first and last elements, respectively, of B.

12) Prreuer and Sminey (Transitivities of betweenness, Trans. Amer. Math. Socs
52 (1942), 95—114) have defined a concept of betweenness in arbitrary lattices by the
condition of GrLivenxko (Geometrie des systems de choses normees, Amer. J. of Math., 58
(1035), 799 828):
G) (@arb)yvdre)y=b=(@vb)r(dvo)
'which is equivalent to metric betweenness (in the wide sense) in normed (metric) lattices [3].
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althougn they are both subgroups of the group of automorphisms for comp-
lementation.

Remark. An interesting conjecture of the writer is that the group of
automorphisms for complementation of B. may be expressed as the (group)
direct product of the group of motions of B and the group of (Boolean
algebra) automorphisms of B.

Theorem 19. 10. Every motion of B is determined by the element into
which it -sends 0. The transformation is f(x)=d(x, f(0)); Vx€B.

Theorem 19. 11. The group of motions of B is isomorphic to the
additive group of the Boolean ring associated with B. Hence, all the motions
of B, other than the identity, are periodic of period 2 and the group of
motions of B is abelian.

Finally, we mention in connection with the subset problem for B in 3(B):

Theorem 19. 12, B has best congruence order theree in N(B).
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