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On approximative solution of algebraic equations.

By PAUL TURAN in Budapest.

1. Many theoretical and technical questions lead to the problem to solve
an algebraic equation with numerically given coefficients. To find approximative
values for the zeros a considerable literature developed starting with NEWTON.
Most of these deal exclusively with equations with real coefficients and
— what is more important in some problems of mechanics and electricity —
even in this case they furnish approximative values for the real zeros only.
The fundamental idea of the only known method which can be applied to
the approximation of real zeros as well as of the complex ones appears in
the papers of NEwTON, WARING and EULER but was given in a more definit
form first by D. BErNouLLI'). This idea was modified and developed into
a method independently by G. DANDELIN®), N. I. LoBATsCHEWSKIj®) and C.

H. GRAEFFE®) and is called as method of GRAEFFE-BERNOULLI in the litera-
ture. This method runs as follows. Let

) h@)=a,,+a,24+...+a,,2", (0e=1)
and we suppose its zeros z,,2,, ..., 2, satisfie the inequality

(1.2) |2, <2< ... <]zl

We define the polynomials

(1.3) fi@=ap.+ai,z2+...4a,.2", (@nv=1)
by

(1.4) f@=(=1"f(2)f.(-Vz2)

1) D. Berxourri, Commentationes Petropolitanae. Vol. 3.

%) G. DaxpeniN, Recherches sur la resolution des équations numériques. Nouveaux
mém. de l'acad. roy. des sciences et belles letires de Bruxelles. 3 (1826), 1—11.

3) N. I. Losacsevszk1y, Algebra ili viicsiszlenie konecsniih. (Kazan, 1834.)

4) C. H Grarrre, Die Auflosung der hoheren numerischen Gleichungen als Beant-

wortung einer von der kgl. Akad. der Wiss. zu Berlin aufgesteliten Preisfrage (Ziirich,
1837.) 1—44.
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which is equivalent to the coefficient-recursion
an-m, il == 2an,ﬂ“n-2m,v_' 2aw-l,vau—2m+|,v + “ e +
+(— l)”lllan—mﬂ,van——m—l,v +(_ I)mazn-m,w (m = 1, 2, . ey ﬂ)-

Hence the coefficients a;,, can be easily computed. It follows from (1.4)
that the zeros of £,(2) are exactly tha numbers 22,2, ..., 22". Hence

> 2!’ -l oy
Zj ==—Qn-1,», % (2,2)¥ = @u-2,,
=1 I1=sh<is=n

etc.; i. e. from (1.2) we have

Iz =1im |-, s " » [ZacsBl=lim |02,
V> ver
or
2-!’
ST
|Zaey | === lim | =22
V> an—},v

Generally for k=1,2,...,n we have
2-“

ak-l,” -

ai.-,v

(1. 5) |2, = lim

i. e. the absolute values of the zeros are determined. If we want the zeros
themselves we have only to expand f£,(2) into a Taylor-series around z=h
where h is so small that

|Z,'—hl < !ZQ—h: ‘: ) < [2',,*- h!
and apply the rule (1.5). Denoting the corresponding r.-values by r,(h) the
points of intersection of the circles

|2| =ri; |2—h|=ri(h)

leave for z, only two possibities, the wrong one of whose can be easily
removed.

2. Let us consider the first-part of the above sketched method which
refers to the approximative values of |z,| only. What are the disadvantages,
theoretical or practical of the method? The first theoretical disadvantage is
that if |2,| =2/, it is no more true. If e. g. (¢ to be determined)

(2.1 fo(@)=(2—1) (z—€®) (z—e**),
then we have obviously
— =14t e2ie—1412c0os2"a.

Choosing »=2I+1, a— - we have

3
, 22" =2 (mod 6)
2’ 6v+2) 2ax 1
cos 3 —cos—3—-—cos T ) and
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az 2141 =0 ({=0,1,2,...)

i. e. if the limes for |2,| would exist then it would be O which does not give
the right value of |2,! which is®) 1. A practical disadvantage is presented by
the fact that there is no method to decide whether not (1.2) is satisfied. It
means a further practical disadvantage that even if (1.2) is fulfilled we have
no rule to decide whether or not for a certain » =7, the quantity

2-%
ﬂk-l, vy

g, v,
is “near enough” to the right value r,. To a given arbitrarily large positive
« and arbitrarily small positive € one can easily modify the example (2. 1)
replacing et by (l—d)e'* and (1—2d)e* with a suitable positive

0 (< T](]') so that there is a » > @ such that

lﬂz,..‘fﬁ__é‘
which is “far” from the right value 1.

3. Hence the practical value of the method seemed to be very small
inspite of all efforts®) and even the theoretical basis of it was cleared up only
in 1913 by POLYA"). The books “Lehrbuch der Algebra” of FRICKE (1924)
and “Vorlesungen {iber Algebra” of BAUER —BIEBERBACH (1929) showed no
progress whatsoever. After the results of REy PASTOR incorporated in his
“Lecciones de Algebra” (Il. edition, 1932) the results of R. SAN JuaN®) meant
the first essential progress. His idea was found independently and clearly by
A. Ostrowsk1?) who resumed the question in 1940 in a paper of fundamental
importance. Here really all phases of the approximationprocess are thoroughly
analysed. He succeeded in getting rid of all of the above-mentioned defects
by a modification of the method. Instead of the coefficients a;, (» fixed,
J=0,1,...,n) he introduced in this theory as a new element the notion of
the Newton-majorant of the polynomial f,(2) (which occurs previously in a
disguised form in the quoted papers®) of R. SAN JuaN), i. e. the polynom

5) A still simpler and clearer counter-example is given by Prof. G. Has6s. Taking
Jo(z)=2%—1isis evidently f, (2)=/f,(2),»=1,2,..., i.e. as, »=0 for all »'s while |z3|=]1.

®) See e.g. in the first volume of Encyklopedie der math. Wiss. the survey of
C. Runag, Separation und Approximation der Wurzeln.

) G. PoLva, Uber das Graeffesche Verfahren. Zeifschrift f. Math: u. Phys. 63
(1915), 275—290.

8) R. Sax-Juaxn, Complementos al método de Griiffe para la resolucion de ecuaciones
algébricas. Revista Matematica Hispano-Americana. Ser. 3 1. (1939) and Compléments a la
méthode de Griffe pour la résolution des équations algébriques. Bull. des Sciences Math.
LIX. (1935), 104—109.

9) A. Ostrowski, Recherches sur la méthode de Graeffe et les zéros des polynomes
et des séries de Laurent. Acta Math. 72 (1940), 99 —257.
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M(zif") I)g 7}, vzj

which is uniquely determined by the following three postulats:

]) Iaj,l'lé‘]},l’ (j=0’ll"'rn)'
2) Putting Rj,..-;'-T—;'.l'l we require
J.v :
Rj,l-if?jﬂ,w U=1)21-'-1 ﬂ)

3) If a polynomial

Mz, f,)= 2_, 17 .7

=u
satisfies 1) and 2) then
7.=T5 {(/=0,1,..:,n)
The existence of M(z, f,) follows easily tho'ugh the explicit determination of

the 7j. quantities is somewhat cumbersome either by calculation or graphi-
cally. We have

T0,9=Ia0,a-‘
and, owing to a, ,=1,
Tav=1
Then he proved if the zeros of fy(z) are
3.1) 12| =|zl=...=|2,]

(what can be supposed without loss of generality) then as approximating value

of |z,| the value
Tk-l,v)zly___ o
( Tk,w g Rfl"

can be chosen. More exactly he proved the inequalities

1 g 1 i R

3.2 (1—2_7) __—lf'il—;(l—2—‘_] k=1,2,...n).
Ry, v

The quantities on the both tails of (3.2) tend to 1 if »- . It is remarkable

that these two quantities i. e. the rapidity of convergence do not depend

upon the coefficients of f,(2), it depends only upon n and k which was no-

tized by SaN Juan.®)

We write out explicitely (3.2) for k= n; this asserts that

9=V
Lk v

i e
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what he!?) improved to
2z, -v
(3.3) mﬂg—L%rgz-
(Tn-l,v)

4. In the later years | developed a method which I used in various ques-
tions of the theory of RIEMANN’s zeta-function, of the theory of gap-series, of
quasi-analytic functions and in other topics.'”) The basis of the method is
the theorem that having the complex numbers w,, w,, ..., w, with
(4.1 m=wl=. . = wy]=wy=1
then denoting the power-sum

w{+w{+...+w{v
by o; we have for m=N the inequality
N N
4.2 '=\|—
( ) m;s:?!j?§+.-\f[of'_( ehm)
independently of the configuration of the wy’s.

Before I succeeded in proving this theorem I raised the question as

a prelude, what lower estimation can be given supposing (4.1) to

‘max ||,
1=SJ=N
I first proved the inequality
1
4.3 max |oj| =—+;.
(4.3) . IEE il =N
A modification of the idea of this proof lead P. ERDOs to the estimation
N 8 6 P
(4.4) Igjﬁjxlailé‘f(T+§+---+-ﬁ) ;
I proved finally the inequality
: 1 L}
(4. 5) gﬁéy|aj[glog2(-]—+...+w) .

The inequality (4.5) is slightly better then (4.4). Having no applications in
view at that time I did not much care with my further conjecture according
which there is a numerical ¢, constant such that from (4. 1)
(4.6) max 'eg;|=¢,

1sj=N
follows. I communicated this conjecture among others to my very talented
late pupil, N. SCHWEITZER who was killed by the Nazis on the 28. Jan. 1945

10) L. ¢. 9) Theorem IX. p. 143.
11) Compare my lecture at the meeting of the Tschechoslovakian and Polish Mathe-

matical Associatiens in Prague on 2. Sept. 1949 entitled “On a new method in the
analysis with applications” Casopis pro pist. mat. a fys. 74 (1949) 123—131. — These
and new applications will be given in a forthcoming book.
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being only 22 years old; he proved my conjecture in the important case when
all the quantities o; are real, with'®) ¢,=1. Also the corollary of this theo-
rem is due to him, according which we have for the general case

: 1
; a = —,
4.7 1‘_r_g____gc“,ltafl_ 3

This will be incorporated in Lemmas II and IIl. Now I observed recently
that all the results (4.2), (4.3), (4.4), (4.5), (4.7) imply modifications of
the method of DANDELIN—LOBATSCHEVSKIJ—GRAEFFE, more or less fit to actual
numerical computation. A proof of my conjecture (4. 6) (which is true perhaps

with c,=—;— generally) seems to be very desirable now since it would give

considerable simplifications in carrying out the calculations. I intend to return

to this subject elsewhere, but I remark right now that my conjecture is in

the general case not true with ¢,=1; even in the case N =2 taking e. g.
' 1. 2>
w=e?

we obtain after a little geometrical consideration
IT+wml<1, [1+wl<l.
This shows that the systems (wi,...,w}) for whose

max (|o,/,

a,l,..., oy|) = minimal
are such that some of the quantities w, are inside the unit-circle, against the
expectation; by the way it is easy to show

max (|a], [0, ..., o)) =
if all the quantities w, are absolutely = 1.

IV

1.

5. My method gives approximative values principially for all |z|'s but
with the notation (3. 1) the approximations for 1 <k <n are uncomparably
worse than those of OSTROWSKI'S method; so we restrict ourselves to the
cases k=1 and k=n, i.e. to the case of the zeros with minimal and
maximal absolute value respectively. Obviously it is enough to consider the
case k=n. A comparative analysis of both methods for this case will follow
later; that the approximation of the zeros with largest absolute value deserves
so much attention is shown by two facts. Firstly for the approximation of
all other zeros can be reduced to the successive applications of it. Secondedly
it is of practical use. As Prof. E. EGERVARY kindly informed me, e. g. having
n wheels rotating on an axe it is very important to determine their least
critical angular-velocity and this is given by the smallest zero of an algebraic
equation of the degree 2n.

12) As the example wy=1,w;,=ws=...=wy_, =0 shows this estimation cannot
be improved.
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6. We shall give three procedures for obtaining approximating values
for the case k=n. The first of these is given by the

First rule. If the zeros of the equation

6.1) fi@R)=a,0+a,02+...4a,,2*=0 (a,,=1)
to be solved are z,,2,, .. .,z, with

(6.2) AR A4 A

then first we form the transforms f,.(z) by the recursion

(6.3) fun@)=(—=1D)"fu(V2) fu(—=)2), w=0,1,...,v—1.
Denoting

(6. 4) fr(2)= jzu aj,.2/, (@nv=1)

and the j*™ power-sum of its zeros by s;j. we compute further the quantities
Si,vy S2,uy+ 4, S24,» Oy the NEWTON —GIRARD formulas :

S,’p +an 1,y = 0
Sg.v +“n-|_v Sl_v+2a"'2'”,: 0

(6‘ 5) Sn,v+au—1.vsn—1,v+---+nao,|r:0
sn+1,v +a||—;,vsn,v+ .. .+au,pshy =0

s2u,v+an-|_u s‘Zn-t.v‘{“ “ae +au,vsn,v= 0.
Then we have'®)

(6. 6) n?’< |2.| . R

1
( max |s;,[7)*"
J=12,..,2n

2

7. Compared to OsTROWSKI's bounds (3.3) our bounds (6.6) are, cu-
riously enough, exactly the same; an improvement of lemma IIl. would give
narrower bounds. As to the calculation both methods form first the transforms
(6.3); the difference comes afterwards. Our first rule prescribes then the
recursive forming of the sequence s;, by (6.5) — a process which needs
only the first three fundamental operations and this can be quickly performed
by any type of computing machines — and then 27 extractions of root which
is a longer operation. OSTROWSKI's procedure requires however the formation
of the NEwTON-majorant which needs at least n and at most n* extraction
of root. If my conjecture expressed in 4 is true then in (6.6) the right side
could be replaced by ¢;2"" and — what is the really important — the appro-

13) The simplicity and limitation of the number of operations necessary to obtain
e.g. a precision of 1% suggest that the method can perhaps serve as a basis for a
computing machine.
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ximative value for |z,| in (6.6) could be replaced by

1

(7.1) ( max |s;.]7)2?,
_max_

—=lyann,

which would mean a considerable reduction of the calculations, first of all
would lessen the number of extractions of root to the half of the original
number.

There is a type of problems at which the rule (6.6) may be more
advantageous than OSTROWSKI's method. It is well-known from the theory of
spectra that a multiplett line of a spectrum will be decomposed in magnetic
fields. The mathematical treatment of this phenomenon leads to a secular
equation of higher degree the matrix of which is symmetrical (i.e. all zeros
are real) but the coefficients depend upon parameters. If e. g. the coefficients
are rational functions of the parameter ¢ then replacing ¢ by different values
the Newton diagramm may change time to time. Following the rule (6. 6)

. .

the quantities |s;| are functions of # easy to draw and their upper enveloppe
will give the dependence of |2,| upon ¢ with a controllable error.

8. What can be said about the approximation by the value (7. 1) without
any conjecture? At the present I can prove only the

Second rule. For the equation (6. 1) — using the notation (6.2), (6. 3),
(6 4) — we form the first v transforms (6.3) and afterwards the first n
power-sums s;,, only, by the recursion (6.5). Then we have

1
( max 's,.]7)"" log 2
-1

9. Further we mention a third rule which is the least practical but was
chronologically the first.

Third rule. With an integer m - n and the notations of the first rule
we from the quantites S, v, Smit,v, ..., Swin,». Then we have

-~ |2,] ] (e"'m J"'
n _"'_ = .

1 1
. 1
( max |s;,|7)= ;

m=<j<min
If m-~ then both tails -1 though slowly.

10. Now I turn to a related subject which claimes however to have only
theoretical interest at the present. As far as | know there is no known method
for the determination of the absolutely greatest imaginary part of the zeros
of a polynomial. A way is opened to such one by the following

Theorem 1. We consider the equation

(10. 1) a+az+-..-+az2"=0
D3
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ra

with the zeros z,,2,,...,2, for which we suppose

(10.2) 12| = |12 <. £ M2, 4| < |1z,).
If H,(z) stands for the m'™ Hermite-polynomial which is defined by
(10 3) e_:sHm (Z) — (_ I)n (e_,z'x)(m),
then for the expression
(10. 4) U,= 2, H,.(z/),
v=1]
which is evidently expressible explicitely by a,, a,, .. .,a,, the limes-relation
( T l+ m_) "
Ny |
(10.5) "!me'f,z‘}n_- log ’W|U| z =|1z,|

holds.
I shall return to this subject later.

11. In his paper?) (§ 7) OsTROWSKI gives bounds for |2,2,...2,| where
— with a little changed notation — we denote by 2,, 2, ...,2, the zeros of

{11.1) f@=a,+a24+-.-+a,_2"'+a,2"=0 (a.=1)
with
(Il-z) |21|-’:;|‘z‘2!f—_'-"'-.":|zf|':-_:"'f;]zm|‘

He compares '2,2,...2z/| with the coefficients of the Newton-majorant of f(2);
if this is denoted again by

Mz, f)= 2> T2,
@N=T;
then with a little change of his notation he proved

P iz .5 fn)
{11.9) 2141 = Ty [1]

T,
Using our lemmas I found that we can form with the coefficients a; another
expression which gives narrower bounds for |2,2,...2,|. To achieve this we
form the polynomials

m

(11.4) : fu(2) ':%7 a2 @,.=1)

k=1,2,....2[’?]

where f;,(2) has the zeros
21,23 1 20
OF course the coefficients a;, can be expressed by the a@'s. Then the role

played by ;:i will be given to
I
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1
max - ja|*.
1=x=x2(7)

More exactly we shall prove the
Theorem II. With the above notation we have instead of (11. 3)

(11.5) 1. __laz. ""|T 4!
2 - l
max |a,,;|*
1=x=2(7)
Applying Theorem II. instead of f(z) to its »™ transform (6. %), the
bounds can be made as near to 1 as we wish.

12. Now we turn to the proofs of some lemmas.
Lemma 1. Let

Wit + Wy =g,
and — what is no loss of generality —
Wy =|wy| = max |w,|=
1<j=N

then we have
-1

1 1
M = max ,Iﬂj = log2(T+...+N]

Is/s
To prove this we consider the equation
(12.1) w¥+o,w¥ 4 .. +by=0
whose zeros are exactly our wj-numbers. NEWTON—GIRARD’s formulae give
(12.2) a+bo,+...4+b,_,004+16,=0 (=12,...,N).

Now [ start from the first identity of (12.2). Then we have
. M
|b,| =0, =M = [ \ ]

Then from the second identity of (12.2)

2|bo| = |0+ b0 || 0] + |6, 0| = M+ M,
. (M

We suppose as proved already for all r<h=N
it (M ApT =1

(12.3) =" T )

Then applying the A** identity of (12.2) we obtain

hib;.lf:l"I+ b,|| o 1l+ —f—lb; 1 |°:|—"

J‘!’f“[‘l) M+h—=2 M+h—1 '

o |
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hence (12.3) is true for r==h, i.e. for 1 == h=N. Since w=1is a zero of
(12. 1) we have

L= — (b4 bt .+ by) == b+ ..+ by|<|b]+ (b +. . +]b4]<
TN S R L T
Since

()= )+ ) o)

i. e. from (12.4)

Q. e.d.

13. Now we turn to the

Lemma II. Let w,, w,,..., w, be such that with a w; also w; occours
among the w-numbers and one of them, say wy, is positive and = 1. Then

(13. 1) M__ max |ogj|=1

/=N
ScHWEITZER’s proof for this lemma starts with the same idea i.e. for-
ming the equation
(13.2) Wb Wt by =0
with the zeros w,, w,,...,w, and considering the power-sums o; together
with the b/s by means of NEWTON—GIRARD formulae. The additional con-
dition of the numbers w; means simply that all the coefficients b; are real.
He uses induction with respect to N. For N=1 the assertion is evident.
We suppose it is proved for all m < N that is among the numbers
Wiy Wayo ooy Wy
a complex number can occur only together with its con]ugate and e.g. w, is
positive and =1, then
max |w{+...+wh|=1

I1=2j=m
and consider the case m = N. First we make the apparent restriction
(13.3) Wy==1.
Then we form the equation (13.2) and NEWTON—GIRARD formulas
o;+b,0.14...4+bj10,=—jb; (=12...,N)
all the b; being real numbers. Summing all these we obtain

N-1 N N
(13.4) cr.‘-—i—g M| (5 R SETSRE B T % 16, = — % Brias s L0
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Using (13.3) we have
-— (bl\'—-u: o R b\) =1 '}" bl +...4 b_\' i
hence (13.4) gives

N-1 N-1
oxt 2 oy (140 +.. . +8) =1+ Z (1+bi+...+b)

or with the notation of (13. 1)

N--1
N+ 2 (14+b,+...+b)]
(13.5) M= = .

N-1
L+ 2 (140 +... 48

Now we distinguish two cases.
I. All the quantities
14b,4+...4+0b,
l1=12,...,(N=1)
arz non-negative. Then the assertion follows at once from (13. 5).
II. There is an integer s such that 1 ==s=N—1 and

(13.6) 14+b,4+...4+b:<0.
Than we consider the equation
GWwW)=w-+bw'4...4+b,=0

with the zeros wi, w;, ..., w; and real coefficients. (13.6) gives together with
sg G(+o0) >0 that G(w) has a real zero >1. This fact, together with the
other one that the reality of the b-coefficients gives that with a w/ also wj
occurs among the w-roots, implies that our induction hypothesis can be
applied to the quantities w; and thus
(13.7) lmax |a;:Elmax [wi+...+wil=1.

=)= =)=
But writing out the NEWTON-GIRARD formulas for G(w) and for the equation
(13.2) we see '

o) =0, (] =1, 2, i 8)-

Hence

(13.8) = M= max |o;| = max |¢;/ = max |¢/|=1
ISj=N 1<j=s 1<)=<s
i.e. lemma Il is proved with the restriction (13. 3).

If we require instead of (13.3) only that there is a positive wy=1
then we have only to introduce the quantities «, by

(13.9) W, =Wy a, ve=]1,2...,N.

Then e¢y=1 and owing to the positivity of wy the numbers @, share with
the wy’s the property that together with a complex number also the conjugate
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occurs among them. Hence (13.8) is applicable to the «/s; hence

max |o;| = max|w\i*la+ A a2 -max |a+ Ao =1
1=

1=j=A\
14, Lemma 1Il is a simple corollary of Lemma I
Lemma Il If &,&,,... &, are such that

&
1

|= max |[§|=1

1ST=a

then we have

- 1
max & 4. 4 &=
1=;=<2, 2
For the proof we introduce the quantities 3, by
&=8,05 pum],

Then we have
B,=1.
Then applying Lemma Il with N=2na and
Wy =8, Wy=F,,...,w,=§,
Wot1 = p‘h w42 =00y <01y Wy, = .3.

we have
2 max | +2i+...+2 =2 max |R(pi+...+8)|=
1=j=2n 1=;<2a
x ma‘xo 4 @) 4B ()] =
Hence
Imaxzi”—l—~.-{- +'.ft—- max :C G DO Y
<j<2n
= max ]r), + +Ju =
1=;=<2a 2

15. Finally we mention the
Lemma IV. If m— N and
max 'w;| =1

I=j=N

then we have'*)

_ i
max |w/-.. +w\ii_leﬁn).

m=j<wm+N

Q e.d.

Q e.d.

4) In a slightly weaksr form see my paper “On Riemann’s hypothesis” Bull. de
I'Acad. des Sciences de 'URSS. 11 (1947) 197.-262. lemma XII. For the proof of the
present form see my forthcoming paper “On Carlson’s theorem” (to be published in Acta

Mat. Acad. Scientiarum Hungaricae).
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16. Now we turn to the proof of our rules. We shall prove only the
Tirst rule; the proofs of the two remaining rules differ from that of the first
only by employing Lemma I resp. Lemma IV instead of Lemma III. %)

To prove the first rule we consider an arbitrary power-sum s; ., 1=j=2n.
For this we have using (6. 2)

"
I

B (e P e [+2¥
[$j,vl =| 2, 7% | =n|z,|/-
" k=]

; P -

(16. 1)

1
I'——— =n j2*=n"?,
(854777

Taking for j that j,, for which

|z

1

max |s;.\7
1S;<2n
is attained, (16.1) gives
2
(16. 2) 2, — =7,
( max [s;.|7)2"
1=j=<2n
To prove the upper estimation we apply Lemma III with
2U
" z
;rz(_f) (W S 4
.zn

‘The condition of this lemma is obvivusly fulfilled; hence there is an integer
& with 1 =k=2n and

RN E SN

_— —

e
Or
1 1 1
|2 =262 ([8,0] )" =227 ( max |sis|*)?"
|z, e
a7.3) — =20,

( max | s};_wl_’:)z:"’

1=k=2n

(17.2) and (17.3) prove the first rule.

17. Now we prove the theorem formulated in 10. The proof is based
upon the formula'®)

15) The analogous application of Lemma Il gives another rule relating to equations
with real coefficients only, which fulfill moreover the unusual condition that they have
among their zeros with maximal absolute value also a real one. Then the upper bound
in (6.6) can be replaced by 1 instead of 227",

16) See e.g. G. Szeao: Orthogonal polynomials. Amer. Math. Soc. Coll. Publ. XXIII,
4{1939) esp. p. 197.
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(17.1) lim —— log ( f“];H,,,(z)|)=,1z|
7o T@+y

valid for all fixed non-real z-values and the integral-representation??)

-

= m m+l [°
(17.2) e H,(2) =(—1)[2112..—J et m SO0 2ztdl
[ T

U

if m is even resp. odd. It follows from (17.2) for real 2’s

i+ ? m L
(17.3) e Ha(2)| = 2 | e mat = 2 T ("‘_‘*‘—').
l 2 -U l n \ 2
The condition (10.2) means that z, is not real. Then we write from (10.4)
"_ H,.(2,)
Un| = Hu 1 R
| Un| [ (24) | +—l Ha(2.)

and thus we obtain

_.,_logi*"(_. +'||Um|l .logff *"‘)\H...(z..)!"
Zm sy ) PR\ TaEn !

(7.9 +L RO a1k

The first term on the right ~|/z,| using (17. 1). Hence to complete the proof
of the theorem we have only to show that the second term in (17.4) tends
to O if m—»o. We consider the expression

H (Z.J )* b

H,(z, ) z, complex  z, real

(17.5) J- “

(17.1) can be written in the form
I'(m+1)  yaw 1 soq)

-e
m k)
;{2+1J

where the o-sign refers to m-»oc with a fixed 2z if z is complex. If 1=v<n
and z, is complex, (17.6) gives

(17.6) |H..(2)|=

H,,,(Z..) ! . Vam (140(1) (12, |—| Iz, )
Hau(zn} l
Hence
[ -l — T . M . Ay
(17.7) | 2 | < ne Izm{1+;(|nl<vng?' 1r|1r.,,| 50, 0,

z,, complex

17) Ibid. p. 103.
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Further from (17. 3) for real z-values

|H, z)|_:},.2¥e ! i (m_l_]J.

Hence if 2; is real then
| oy rfmy)

: H(z) 2 - V2| 15, 040 (1))
17.8 " ;
Lol H, ()| l”’l 1 (m+1)
If m is even then we have
2
l!m‘f—llllm-'__) Ilﬂr{-;j e i ‘1—{-_1
I'(m-+1) "T(m+1) [my = 2% = 2= °
t"‘f] m-{-1
If n is odd then
r(z +|Jz|m+'| rlat+1)z(a).
ey At bt e <o s
lm—-—3]
(m—}—l\ (m—l—2

1 e
<(m-+ )I (m~|~2} 2’ o e
Hence for all integer m values we have

1_(?""']1(’"_3;[ 5 (m-+42)?
Py TP

and from (17.8)

H (Z,v}f T
- —(m+2)2 ¢ 2 V2m|1: | Qo))
| SamtY
From this we have evidently for m-oc
o Hu(z)

0.

2 real Hm (zn)
This and (17.7) give that /-0 for m~o and hence the second term im
(17. 4) tends to O indeed. This completes the proof of the Theorem 1.

18. Now we turn to the proof of the Theorem II. With the notation
(11.1), (11.2), (11.4) we have to prove (11.5) for 1=1=m. For the proof
we shall proceed similarly as at the proof of our rules. Going over to the
reciprocal polynomial we have to show again with the notation (11. 1), (11. 2),
(11.4)

(18.1) 1 2enZuiie. .- 2]

<2

g T
‘ f ] max ]am-—f.k! .
: 1=ks2 (';‘)
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First of all we have for all integer k = |

: o s
(18.2) s = > (2, ...2,)| < (I ' AT
1S, <ig~ ...<i<m et

If we take k=—k,, where k, is that index & for which

1
max |a, ,.|*

1=r=<2 (T)
is attained then (18.2) gives
1
I8ty o Zal (mY %o — (m\!
2oL m) ™= (1)
[

‘which is the first half of our assertion (18.1). To prove the second part we
.apply again Lemma III with

fi [m] o 2,‘,__2;,_. . &y

K ":-j—"z‘ % 2 ! lj__fl.l{f2<...<jt-fm
m=i+] = * = %y

"The condition of this lemma is obviously satified. Hence we have an integer

k,, with 1<k, _2[’}') such that

Z‘ (zi ... 25)"
1Sh<hiT.<usm .34
(Zm 41" Zin )k' | ; 2
or
'am-—f.l'l! -~ L
(zm-f+l R ) zm Jkl 2 »
Hence
1 1 X
|zm--f+l‘ . ‘zm! i2kl ‘am-l,hlkliz max [am—l,l‘] k'
1=<k=<2(7

k integer
“This completes the proof of the Theorem II.

(Received November 8, 1950.)



