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On some problems concerning Poisson processes.

By ALFRED RENYI in Budapest.

Introduction.

Let us consider a stochastic process of random events, which is of
MARKOV’s type (strictly speaking: a differential process), but not necessarily
homogeneous in time. Let the process start at time ¢ 0, and let the random
variable <, (f>0) denote the number of events which occur in the time
interval (0, ¢). The following suppositions are made :

A)if h<th=ti<t<...<t, ,<t, (k=2,3,...), the random variables
ShT— Sy Stm=t ey Sty —=hy,_, are independent of each other.

B) Let w,(s,t) denote the probability of exactly k events occurring in
the time interval (s,r) (s<t; k=0.1,2,...): we suppose that for any ar-
bitrary small #> 0 and any arbitrary large 7 >0 a positive number 4 >0

can be found such that if f, <¢ ¢ <¢t, —.-.<t,<T and l (t,,—t,_ ) <0
r—1

we have [[w,(t, ,,t,) > 1—e; by other words, if the total length of the

r=1
intervals (4,,_,, ,,), (r=1,2,...,n) does not exceed dJ, the probability that
no event will take place in any of these intervals is greater than 1—e (here
n is an arbitrary positive integer). Condition B) postulates the “rarity” of
the events considered in that sense that it is highly probable that no event
will take place during a sufficiently short time consisting of any number of
time intervals'). We shall refer to B) as the first postulate of rarity.
C) We suppose further that for every s -0

lim _wi(s, s+ds) = 1.
31—»" 1 e wu(st s‘{‘-—"b)
s =0

Condition C) postulates the “rarity” of the events considered, in a different
sense: it states that if the length the time intervall considered tends to O,

!) This can be expressed also by saying that the “interval function” 1— wy(s,f) is
absolutely continuous.
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the probability of the occurrence of at least one event is in the limit equa
to the probability of the occurrence of exactly one event or, by other words, that
the probability of the occurrence of more than one event in a short time interval
is in the limit negligible compared with the probability of the occurrence
of one event. We shall refer to C) as the second postulate of rarity. In § 1.
we shall prove that under conditions A), B) and C) the process is a POISSON
process, i. e. there exists a nonnegative, L-mesurable function Z(r) such that

putting

(1) A(t) = | 2(2)d1
we have _ 2
@) wi(s, f) = AOZAO) -1 <t; k=0,1,2,...).

The proof is similar to the proof given in the homogeneous case in a joint
paper of L. JANOSSY, ]J. AczéL and the author of the present paper?). In the
homogeneous case, i. e. if w,(s,f) depends only on t—s, the condition B)
is clearly not necessary, and it follows from conditions A) and C) that
A(t)==~4it and therefore

[4(t—9)]

e #(t-9)
k!

(3) W, (s, t) =
where 4 >0 is a constant.

In § 2 we discuss the following problem: let us suppose that every
event in a POISSON process is the starting point of a happening, which has
a definite duration, this duration being also a random variable, the distri-
bution law of which may depend on the time when the happening started.
Let us denote by F(¢, ) probability that a happening which started at time ¢
is finished before £+, i.e. has a duration < 7. Let us denote by #, the
number of happenings going on at time ¢; clearly #, is a random variable
and we may ask about its distribution law+ Let p,(f) denote the probability
of exactly K happenings going on at time . Let us put further

(4) o(t,7)=1—F(1, 7).

We shall prove that if the RIEMANN—STIELTJES inlegral
t

(5) A(t) =J o (1, t—1) dA (1)

exists for every f, — thus especially if 4(7r) and ¢(r,t—7) are continuous
functions — we have

(6) p:.-(f) - .[Ai_s_t!)_]ie-.«\m

2) L. JAnossy, A. Renyi, |. AczénL: On composad Poisson distributicns. Acta Math.
Hung., 1 (1951), in print.
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where A(t) is defined by (5). By other words 7, has also a PoIssoN distri-
bution. Thus for instance if the underlying POISSON process is homogeneous
in time, i.e. A(f)=4t, (4> 0) and if F(¢, 7) =— 1—e**, where « > 0, we have

) Aly=--(1—ew)

and thus

A k
Z—em) Ay
(8) p.(t) = E Kl J ¥ A

a result which is well known?).
Note that it follows from (8) that if #- ~, the distribution of », tends
to a limiting distribution:

ALy
) s e

The above problem has many interesting physical and technical appli-
cations. We mention only three of them.

a) Let us consider some radioactive substance A; if an atom of A
disintegrates, we shall say that an event occurred, and denote by £, the
number of atoms which disintegrated in the time interval (0, ¢). If an A-atom
disintegrates, an other atom, — say a B-atom — originates. Let us suppose that
the B-atoms are also radioactive; in this case a “happening” is the existence
of a B-atom, which starts at the moment when a B-atom originates, and is
finished at the moment when the B-atom considered disintegrates; in this
case 7, — the number of “happenings going on” — denotes simply the number
of B-atoms present at time £. The existence of lim p,(f) expresses the well

t—>»=>

known fact that the quantity of B-atoms present tends to a limit, which is
expressed in physics by saying that after some time an equilibrium is reached.
(9) shows that the small fluctuations about this equilibrium follow POISSON’s
law. Of course (8) and (9) can be applied to this problem only if it is phy-
sically reasonable to suppose Z(r) constant, (i. e. if it can be neglected that
the quantity of A-atoms decreases in time). If this is not the case, we have
to put A(f)=4e", (i.e. take into account the exponential decrease in the
quantity of A-atoms owing to disintegrations) and we obtain

-wi_ -pt

—— e

(10) BilfymmeB® 1 S (ke 1,200

( e-v."__e—_uf k

In this case we have naturally lim p,(f) =0 if (k=1,2,... and lim p,(t) =1;
o t—>cc

3) A. JexseN: An elucidation of Erlang's statistical works through the theory of
stochastic processes. (The Life and Works of A. K. Erlang) Copenhagen, 1948, pp. 23—100.
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this means that in the limit there remains no B-atom at all (and of course
no A-atom either).

b) Let us consider a telephone centre, with a practically infinite number
of telephone lines. If a telephone call is made, we shall say that an event
occurred, and denote by £, the number of calls during the time interval (0, );
every call is the starting point of a conversations, the duration of which
depends on chance. In this case a conversation going on through the centre
is called a happening, and 7, denotes the number of conversations going
on at time £ In telephone engineering it is generally supposed that during
the most busy hours of a day, the density of calls is constant, i. e. the
process is homogeneous in time; it is maintained further by many specialists
that the length of conversations have an exponential law of distribution
F(t,©)=—1—e*". It seems however that this assumption is used in first
place because of its simplicity: as a matter of fact the random variables
7, form a differential process if (and only if) F(f, 7) = 1—e*"; indeed in this
case the probability that a conversation going on at time ¢ will be finished
in the time interval (¢, f-}Jt) does not depend on that how long the con-
versation considered has been going on before, because of

d,F(t, 1)

an —Fan 0
being constant'). Let us mention, that our results enable to treat the question
mentioned above without supposing the density of calls being constant, and
by taking into account that the distribution of the length of conversations
may depend also on the hour of day (which seems rather reasonable).

¢) Let us consider a vacuum tube, and let us say that an event occurred,
when an electron leaves the cathod; thus {, denotes the number of electrons
whieh left the cathod during the time interval (O, f); the happening started
by an event is in this case the flight of the electron in the tube, and 7, de-
notes the number of electrons in the tube at time £. The underlying Poisson
process is in this case generally not homogeneous in'time; as a matter of
fact 2(¢) depends on the temperature of the cathod. The function F(t, 7) is in
this case of a rather intricate nature?), it depends on many factors, especially
on the average speed of the electrons which leave the cathod and on the voltage
mpressed on the grid from outside and depends thus in general explicity
on t also.

In all these applications (and in other ones not mentioned here) our results
make it possible to investigate the situation under fairly general conditions.

| have announced the results of § 2 recently in a lecture, at the Hungarian
Academy of Sciences together with a heuristic approach instead of proof.

4) Conversely if we suppose that (11) holds, it follows that F(f,7r)=—=1—e-ur,
%) We suppose conditions in which the effect of the space charge can be neglected.
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In the present paper these results are proved rigorously by the use of the
method of generating functions.

§ 1. The non-homogeneous Poisson process.

As stated in the introduction, we shall prove that if conditions A), B)
and C) are satisfied, we have (2).
It follows from A) that

(1.1) w,(0, ) = w,(0, s) w,(s, {) (s<i),
thus putting A(f) = — log w,(0, f), we have
(1.2) W, (s, 1) = e~ 0-49)),

As the left hand side of (1.2)is -1, it follows that A(t) is non-decreasing.
Condition B) implies that for any # >0 and 7 > 0 there can be found a ¢~ 0

such that if {, <#, <...<1,,<T and _'_\_ (ty,—t,,)<d
r=I
(L3 2 (Alt)—A(t, 1)) <log ——.
r=1 —

This means that A(f) is absolutely continuous in the interval (0, 7)
and thus can be represented in the form

(1. 4) A(ty=| 2(1)dv with 2(z)=O0.
0

Thus (2) is proved for k=0. Next it follows from A) that
(1. 5) w, (0, £) = w,(0, s) w, (s, #) -+ w, (0, s) w,(s, 1)
or, putting

v, (S, 1) = w(s, t) 1 ()-1())
we have
(1.6) vy (8, t) = ,(0, 1) —2,(0, s).

Let us denote (0, ) == A, (¢), it follows from (1.6) that v, (s, ) = A, () — A,(s)
and thus, taking (i.6) into account, we obtain

(1.7 Wy (s, 1) = (A, (1) — A, (s)) e -1,

As w,(s,t) = 1—w,(s, 1), it follows from B) using the inequality 1 —e " <x
for x >0 and putting e =K
(1.8) 2 [AE) =A< K 2wl ) = K 2 [A(G)—At,-)

| —
r=J

and thus A,(¢) is also absolutely continuous, and we may put

i

A (1) = | A(r)dr.
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Now let us apply condition C); it follows that

(1.9) 2y (1) = A(7) almost ewerywhere,
and thus A,(f) = A(¢), and therefore
(1.10) wy (s, 1) =[A(t) — A(s)] et (-1 61

which proves (2) for k= 1.

Let us suppose, that (2) is proved for k-~ n—1, we shall prove that
it holds also for A=n; thus (2) follows by induction for all values of k.
We start from the identity

"

(1.11) w,(0, £) = > w,(0, ) w,_(s, ) (s <)

Substituting the values of w.(0,s) and w/(s,t) for k=0,1,2,...,(n —1)
from (2) into (1.11) it follows :
w,(0,2) = w,(0,s) e 1A Ly (s,1) e L
(1.12) . ,1"(:)-[,1«)—'.4:9 "= A"(s) _—r
n!

Putting

(1.13) f(s, t)=w,(s, 1) er-240)— AO—AE)

n!
we obtain from (1. 12) f(s,t) = f(0,{)—f(0,s) and thus

a8 wsn)=|PO=AOL, 50,1 f0,5)] e om0

n! :

Now as w,(s,?) = 1—w,(s,f), the interval functicn w,(s,7) is absolutely

contiouous, and thus f(0,1) — f(0,s) = | g(¢)dr; It follows from condition

H, (Q S 1 ’ ;,
I]m - - -

WG st ds) 0 for n=2,3,...

and thus we obtain g(7) = 0 almost ewerywhere, and therefore from (1. 14)
it results

(1. 16) w,(s, 1) = -(:—1(—‘—);"-!/1—{8)—)“ e~ -1
and (Z) is proved for k= n also.

§ 2. The distribution of »,.
First of all let us introduce certain notations. Let us divide the interval
(0, t) into n equal parts by means of the points £, = —l;{ (k=0,1,2,:i::10)

and let-us piat & -t =4, AML)—=Ah.D)=dA; (k=12 :y;n% 1
F(t, 7) denotes the distribution functions of the length of a happening which
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started at time £, and @(f, 7)=1—F(¢, 7) let us put
2.1) M= Max @(r,t—7), mi= Min @(7, t—71).

G 1S1=h 1=t

Let U.(r) denole the probability of that there are exactly r such happenings
going on at time which started in the time interval (¢,_,, %), (r=0,1,2,...).
We sart from the inequalities

N (S
(2.2) S AR

s" S r s-r
U= X (3wt ) M (1 —m)

Wty by m (=M™ = UL(0)

which are fundamental for the proof which we shall develop here. (2.2) is
obtained as follows: if r happenings are going on at time ¢ which all started
in the time interval (f, ,, f.), there must have been s_-r events in this
interval ; if a happening started exactly at time ¢, #,_, — 7 {,, the probability
that it will continue going on at time f, is ¢(7,f—7); as we do not know
the value of = exactly we can state only thal this probability lies somewhere
between m, and M,; similarly the probability that the happening considered
is finished before f is equal to 1 —q(7,{—7) and thus its value lies some.
where between 1—M, and 1 —m,; thus (2, 2) follows. Now let us introduce
the generating function of the probabilities U,(r):

(2. 3) v@=> U0z

Here and in what follows we consider the generating functions only for real
values of z lying between O and 1. If 0 <z <1 it follows from (2.2) that

(2.4) e Ay (mp - My) — W, (2) < AN My - my)
which may be also written in the form

(2.5) W, (2) — @A N M (1) + S AN (M- my)
where —1 <9, <41,

Now if p,(f) denotes the probability of exactly N happenings going
on at time #, we have evidently

(2.6) pa(t) = > L) Un(r) - U(r)

—
vt A=

where the summation is extended over all (ordered) n-tuples of nonnega-

tive integers. r,, 7., ..., r, such that :;1 r.= N. It follows, introducing the
k-1

generating function

2.7) (@)= 2 ps(t)z'

that
2.8) @) = [ (),
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and thus from (2.5)
(‘__'i:u&.a‘lk)(.unw(;j_zﬂ'(uk-m,‘m.u,)
(2.9 n@@)=e =
where —1 <= ¢ <+ 1. Let now n tend to oc; if the RIEMANN—STIELTJES in-
t
tegral [ ¢ (7, t—1) dA(7) exists, or by other words, if ¢(z,f—7) is Riemann

integrable with respect to the weigth function A(7), we have
t

(2. 10) lim ZM;,.JAA.:](p(r,f—'l)dA(’t),
n—+ot k=1 .
0
and (because the oscillation sums are tending to 0)
(2.11) lim > (M,—m,)4A,=0.
n=»o k=1

Thus it follows from (2. 9) that

‘ |t 2 dr'(z— 1)
(2.12) n@)=e" \
Developing the expression at the right of (2. 12) according to the powers
of 2z, and comparing the coefficients at both sides of (2.12) we obtain

r ¢ i t
( ]@(r,t-—ﬂl(r)df’ — (@t t-nyamar
i 5 ¥

(2.13) p.(t) =

Thus it is proved that 7, follyws also a PoISSON distribution.

Finally it should be mentioned, that the distribution of », can be de-
termined by the method developed above also in case the underlying diffe-
rential process (the process {,) is not a POISSON process, but is of a more
general type. We shall return to this question at an other occasion.

n!
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