Points of continuity of semi-continuous functions.

By M. K. FORT, Jr. in Urbana, Illinois, U. S. A.

1. Introduction.

Let X be a metric space with distance function d, and let 2^{x} be the set of all non-empty compact subsets of X. If $A \in 2^{x}$ and $\varepsilon > 0$, then we define $U(\varepsilon, A) = \{x | x \in X \text{ and } d(x, a) < \varepsilon \text{ for some } a \in A\}$.

We let f be a function on a topological space T into 2^x . The function f is upper semi-continuous [lower semi-continuous] at $p \in T$ if and only if corresponding to each $\varepsilon > 0$ there exists a neighborhood V of p such that $f(q) \subset U(\varepsilon, f(p))$ [$f(p) \subset U(\varepsilon, f(q))$] for all $q \in V$. f is continuous at p if and only if f is both upper and lower semi-continuous at p. We prove that if f is either upper semi-continuous on T or lower semi-continuous on T, then the points of T at which f is continuous form a residual set. The first theorem of this type seems to have been proved by L. S. HILL [3]. Extensions of HILL's theorem and similar results have been obtained by Kuratowski [4], Choquet [1] and Fort [2]. The theorems proved in these papers, however, all contain hypotheses which require X to be either compact or separable. We obtain theorems for non-separable spaces X by making use of functions M and N (defined below) which act somewhat as measure functions on 2^x .

2. Two theorems concerning points of continuity.

Let $A \in 2^X$ and suppose $\varepsilon > 0$. We define $M(A, \varepsilon)$ to be the largest positive integer m for which there exist m points x_1, \ldots, x_m in A with $d(x_j, x_k) > \varepsilon$ for $j \neq k$. We define $N(A, \varepsilon)$ to be the smallest integer n such that A can be covered by n ε -neighborhoods of points of X. The compactness of A insures that $M(A, \varepsilon)$ and $N(A, \varepsilon)$ are properly defined.

Theorem 1. If f is lower semi-continuous on T, then f is continuous at point of a residual set.

Proof. If n is a positive integer and $\varepsilon > 0$, we define $B(n, \varepsilon)$ to be the set of all points $p \in T$ for which $M(f(p), \varepsilon) \le n$, and for which $0 < \varepsilon' < 3\varepsilon$

and V a neighborhood of p implies that there exists $q \in V$ such that $f(q) \subset U(\varepsilon', f(p))$. We shall prove that each set $B(n, \varepsilon)$ is nowhere dense.

We first prove that $B(n,\varepsilon)$ is closed. Since f is lower semi-continuous, it is easy to verify that $M(f(q),\varepsilon) \ge M(f(p),\varepsilon)$ for all q sufficiently close to p. Let $r \in \overline{B(n,\varepsilon)}$. It follows from the preceding remark that $M(f(r),\varepsilon) \le n$. Now let us assume that $0 < \varepsilon' < 3\varepsilon$ and that V is a neighborhood of r. We choose ε'' such that $\varepsilon' < \varepsilon'' < 3\varepsilon$. It follows from the lower semi-continuity of f that $U(\varepsilon',f(r)) \subset U(\varepsilon'',f(p))$ for all p sufficiently close to r. Choose $p \in V \cap B(n,\varepsilon)$ for which $U(\varepsilon',f(r)) \subset U(\varepsilon'',f(p))$. Since $p \in B(n,\varepsilon)$ and V is a neighborhood of p, there exists $q \in V$ for which $f(q) \subset U(\varepsilon'',f(p))$. Thus $f(q) \subset U(\varepsilon',f(r))$ and we see that $r \in B(n,\varepsilon)$. We have therefore proved that $B(n,\varepsilon)$ is closed.

Next, in order to prove that $B(n,\varepsilon)$ is nowhere dense, we must show that $B(n,\varepsilon)$ cannot contain a non-empty open set. Since $M(f(p),\varepsilon) \leq n$ for each $p \in B(n,\varepsilon)$, in order to show that $B(n,\varepsilon)$ cannot contain a non-empty open set it is sufficient to prove that for each $p \in B(n,\varepsilon)$ there exist points q arbitrarily close to p for which $M(f(q),\varepsilon) \geq M(f(p),\varepsilon)+1$. We let $p \in B(n,\varepsilon)$ and let $m = M(f(p),\varepsilon)$. There exist m points x_1,\ldots,x_m in f(p) such that $d(x_j,x_k)>\varepsilon$ for $j \neq k$. We define $2\delta = \min\{d(x_j,x_k)-\varepsilon|j\neq k\}$ and $\eta = \min(\delta,\varepsilon)$. Now let V be a neighborhood of p. There exists $q \in V$ such that $f(p) \subset U(\eta,f(q))$ and $f(q) \subset U(2\varepsilon,f(p))$. We choose points y_1,\ldots,y_m in f(q) such that $d(y_k,x_k)<\eta$ for $1\leq k\leq m$ and we choose $y_{m+1}\in f(q)-U(2\varepsilon,f(p))$. It is easy to verify that if j and k are different integers between 1 and m+1 then $d(y_j,y_k)>\varepsilon$. Thus $M(f(q),\varepsilon)\geq m+1$.

We now let B be the union of the sets $B(n,\varepsilon)$ for all positive integers n and positive rational numbers ε . B is of the first category, and hence T-B is a residual set. Our theorem is proved if we can show that f is upper semi-continuous (and hence continuous) at each point of T-B.

Let $p \in T - B$ and suppose $\varepsilon > 0$. We choose ε' rational such that $0 < \varepsilon' < \varepsilon/3$ and let $m = M(f(p), \varepsilon')$. Since $p \notin B(n, \varepsilon')$, there exists a positive number $\varepsilon'' < 3\varepsilon'$ and a neighborhood V of p such that $f(q) \subset U(\varepsilon'', f(p))$ for all $q \in V$. Thus $f(q) \subset U(\varepsilon, f(p))$ for all $q \in V$ and we see that f is upper semi-continuous at p.

Theorem 2. If f is upper semi-continuous on T, then f is continuous at points of a residual set.

Proof. For each positive number ε we define $C(\varepsilon)$ to be the set of all points $p \in T$ such that $0 < \varepsilon' < 3\varepsilon$ and V a neighborhood of p implies that there exists $q \in V$ such that $f(p) \equiv U(\varepsilon', f(q))$. We shall prove that each set $C(\varepsilon)$ is nowhere dense.

First we prove that $C(\varepsilon)$ is closed. Let $r \in \overline{C(\varepsilon)}$ and suppose $0 < \varepsilon' < 3\varepsilon$. Choose ε'' such that $\varepsilon' < \varepsilon'' < 3\varepsilon$. Since f is upper semi-continuous, there

exists a neighborhood V of r such that if $p \in V$ then $f(p) \subset U(\varepsilon'' - \varepsilon', f(r))$. We now choose $p \in V \cap C(\varepsilon)$. There exists $q \in V$ such that $f(p) \subset U(\varepsilon'', f(q))$. It follows easily that $f(r) \subset U(\varepsilon', f(q))$ and hence $r \in C(\varepsilon)$. Thus $C(\varepsilon)$ is closed.

We must now prove that $C(\varepsilon)$ cannot contain a non-empty open set. Since the numbers $N(f(p), \varepsilon)$ are bounded below by 0, in order to prove that $C(\varepsilon)$ cannot contain a non-empty open set it is sufficient to prove that if $p \in C(\varepsilon)$ then there exist points q arbitrarily close to p for which $N(f(q), \varepsilon) \leq N(f(p), \varepsilon) - 1$. Let $p \in C(\varepsilon)$ and let $n = N(f(p), \varepsilon)$. Choose a set W_1, \ldots, W_n of ε -neighborhoods which cover f(p). It follows from the upper semi-continuity of f that there exists a neighborhood V of p such that

 $f(q) \subset \bigcup_{k=1}^{n} W_k$ for all $q \in V$. Since $p \in C(\varepsilon)$, there exists $q \in V$ such that $f(p) \subset U(2\varepsilon, f(q))$. Choose $x \in f(p) - U(2\varepsilon, f(q))$. There exists k such that $x \in W_k$. It is easy to see that no point of f(q) is in W_k . Hence f(q) can be covered by a set of n-1 ε -neighborhoods and $N(f(q), \varepsilon) \leq n-1$.

We now let C be the union of all sets $C(\varepsilon)$ for which ε is rational. C is a set of the first category and hence T-C is a residual set. It is easy to verify that f is lower semi-continuous at each point of T-C and hence f is continuous at each point of a residual set.

Bibliography.

- [1] G. Choquet, Convergences. Annales de L'Université de Grenoble. 23 (1947), 57-111.
- [2] M. K. Fort, Jr., A unified theory of semi-continuity. Duke Math. J., 16 (1949), 237-246.
- [3] L. S. Hill, Properties of certain aggregate functions. Amer. J. Math. 49 (1927), 419 432.
- [4] C. Kuratowski, Sur les décompositions semi-continues d'espaces métriques compacts. Fund. Math. 11 (1928), 169—186.

(Received April 26, 1951.)