An extension of Legendre's criterion in connection with the first case of Fermat's last theorem.

By PETER DÉNES in Budapest.

The so-called Legendre's criterion says that if l and 2l+1 are odd primes, the first case of Fermat's last theorem is true; that means that the equation

$$(1) x^l + y^l + z^l = 0,$$

has no integer solution x, y, z such that $l \nmid xyz$.

FURTWÄNGLER¹) extended Legendre's criterion and proved that (1) has no integer solution x, y, z prime to l, if one of the numbres ul+1, u=2,4,8,10, is a prime. In the present paper a further extension of Legendre's criterion will be given, up to u=110.

Lemma. If l and p = ul + 1 are odd primes, u is a positive integer prime to l, ϱ is a primitive u^{th} root of unity, \mathfrak{p} is a prime ideal factor of p in the field of the u^{th} roots of unity $k(\varrho)$ and further is

for any value of a and b, (1) has no integer solution x, y, z, prime to l.

Proof. Let m denote an integer prime to p, so is

$$m^{ii} \equiv 1 \pmod{p}$$

and from this congruence follows

$$m^{l} \equiv \varrho^{c} \pmod{\mathfrak{p}},$$

c a positive integer, because the prime ideal p is of the first degree in $k(\varrho)$. Assuming none of the numbers x, y, z divisible be p, (1) and (3) yield the congruence

$$\varrho^{c_1} + \varrho^{c_2} + \varrho^{c_3} \equiv 0 \pmod{\mathfrak{p}},$$

which is, however, according to our assumption (2) impossible. Hence one of

¹⁾ Ph. Furtwängler: Letzer Fermat'scher Satz und Eisenstein'sches Reziprozitätsgesetz. Sitzungesberichte d. Akad. d. Wiss., Wien, Abt. Ila., 121 (1912), 589—592.

116 P. Dénes

the numbers x, y, z must be divisible by p. In this case the following congruence holds:

$$p^l \equiv p \pmod{l^2}$$
,

which must be satisfied 1) for each divisor x, y, z. From this we get

$$(ul+1)^l \equiv 1 \equiv ul+1 \pmod{l^2}$$

wherefrom $u \equiv 0 \pmod{l}$ follows, in contradiction to our supposition that u is prime to 1. This completes the proof of our lemma.

Denoting by $N_u(\omega)$ the norm of the number ω of the field $k(\varrho)$, from the congruence

$$1 + \varrho^a + \varrho^b \equiv 0 \pmod{\mathfrak{p}}$$

follows

$$N_u(1+\varrho^a+\varrho^b)\equiv 0\pmod{p}$$
.

Consequently, if the inequality

$$(4) 0 < N_u(1 + \varrho^a + \varrho^b) < p$$

is satisfied, the incongruence (2) is true for any value of a and b. The norm of $1 + e^a + e^b$ can only be equal zero, if

$$(5) 1 + \varrho^a + \varrho^b = 0,$$

the only solution of which is $e^a = e^{2\pi i/3}$ and $e^b = e^{4\pi i/3}$. Hence, if $e^a = e^{4\pi i/3}$ is prime to 3, the equation (5) cannot hold.

Further, as u is an even integer, we have

$$\Theta = (1 + \varrho^{a} + \varrho^{b})^{2} (1 + \varrho^{-a} + \varrho^{-b})^{2} =$$

$$= \left[3 + 2\cos a \frac{2\pi}{u} + 2\cos b \frac{2\pi}{u} + 2\cos(a - b) \frac{2\pi}{u} \right]^{2} =$$

$$= 1 + 8\cos(a + b) \frac{\pi}{u} \cos(a - b) \frac{\pi}{u} + 8\cos^{2}(a - b) \frac{\pi}{u} +$$

$$+ 64\cos^{2} a \frac{\pi}{u} \cos^{2} b \frac{\pi}{u} \cos^{2}(a - b) \frac{\pi}{u}.$$

Denoting by Φ the following expression:

$$\Phi = (2 + \varrho^a)(2 + \varrho^{-a})(2 + \varrho^b)(2 + \varrho^{-b}) = 1 + 8\cos(a + b)\frac{\pi}{u}\cos(a - b)\frac{\pi}{u} + (7)$$

$$+8+64\cos^2 a \frac{\pi}{u}\cos^2 b \frac{\pi}{u}$$
,

obviously it is

(8)
$$\Theta \leq \Phi$$
,

because both Θ and Φ are positive real numbers and

$$\Phi - \Theta = \left[1 - \cos^2(a - b) \frac{\pi}{u}\right] \left[8 + 64 \cos^2 a \frac{\pi}{u} \cos^2 b \frac{\pi}{u}\right] \ge 0.$$

First we suppose that none of the numbers a, b, a-b is divisible by u; then, denoting by Ψ the following relation:

$$w = \frac{8 + 64\cos^2 a \frac{\pi}{u}\cos^2 b \frac{\pi}{u}}{\Phi},$$

we have

$$\Psi = \frac{8 + 64\cos^2 a \frac{\pi}{u} \cos^2 b \frac{\pi}{u}}{1 + 8\cos^2 a \frac{\pi}{u} + 8\cos^2 b \frac{\pi}{u} + 64\cos^2 a \frac{\pi}{u} \cos^2 b \frac{\pi}{u}} \ge \frac{8}{9},$$

and hence

$$\frac{\Theta}{\Phi} = 1 - \Psi \left[1 - \cos^2(a - b) \frac{\pi}{u} \right] \leq 1 - \frac{8}{9} \left[1 - \cos^2(a - b) \frac{\pi}{u} \right],$$

or, from this,

(9)
$$\frac{\Theta}{\Phi} \leq \frac{5}{9} + \frac{4}{9} \cos(a-b) \frac{2\pi}{u} = \frac{(2 + \varrho^{a-b})(2 + \varrho^{-a+b})}{3^2}.$$

From (6), (7), (9), we get the following inequality, if none of the numbers a, b, a-b is divisible by u:

(10)
$$N_u(1+\varrho^a+\varrho^b) \leq \frac{\{N_u(2+\varrho^a)N_u(2+\varrho^b)N_u(2+\varrho^{a-b})\}^{1/2}}{3^{\varphi(u)/2}}$$

where q(u) represents the number-theoretical function of EULER.

The first case of FERMAT's last theorem is proved 2) for all odd primes l < L, L = 253747899 and therefore, it is true, with respect to (10), if

(11)
$$\frac{\left[N_u(2+\varrho^c)\right]^{3/2}}{u \cdot 3^{\varphi(u)/2}} < L \text{ and } \frac{N_u(2+\varrho^c)}{u} < L,$$

where c is chosen in the way that $N_u(2+\varrho^c) \ge N_u(2+\varrho^d)$, d any positive integer prime to u/2. The numbers u=2,4,8,10,14,16,20,22,26,28,32,34,38,40,44,46,50,52,56,70 suffice the inequalities (11), even with c=u/4, rendering the most inadvantageous case.

Investigating the other primes l, whether $N_u(1+\varrho^a+\varrho^b)$ is divisible by p, we may suppose (a,b,u)=1, as else $N_u(1+\varrho^a+\varrho^b)$ would be the power of an integer n and it would suffice to show that n is smaller than p. Is one of the numbers a,b divisible bu u, then it is sufficient to study simply $N_u(2+\varrho)$.

We take now into consideration some values of u and examine the different possible bounds of $N_u(1+\varrho^a+\varrho^b)$ with help of (10).

²⁾ D. H. and Emma Lehmer: On the first case of Fermat's Last Theorem. Bull. Amer. Math. Soc. 47 (1941), 139—142.

118 P. Dénes

$$u = 58$$
; $c = 1$.
 $N_{58}(2+\varrho) = 2^{29} - 1 < 58L + 1$.
 $\frac{(2^{29}-1)^{3/2}}{3^{14}} < 58L + 1$.
 $u = 62$; $c = 1$.
 $N_{62}(2+\varrho) = 2^{31} - 1 < 62L + 1$.
 $\frac{(2^{31}-2)^{3/2}}{3^{15}} < 62L + 1$.

u = 64.

$$N_{64}(1+\varrho) = 2^{32} + 1 < 64L + 1.$$

In (10) only one of the numbers a, b may be even; the largest norm bound is obtained with a = 1 and b = 16:

$$\frac{(2^{32}+1)\cdot(2^2+1)^8}{3^{16}}<64L+1.$$

u = 68.

$$N_{68}(2+\varrho) = \frac{2^{34}+1}{2^2+1} < 68L+1.$$

In (10) the largest value results with a = 1, b = 17:

$$\frac{(2^{34}+1)^{1/2}\cdot (2^{17}+1)\cdot (2^2+1)^8}{(2^2+1)^{1/2}\cdot (2+1)\cdot 3^{16}}<68L+1.$$

u = 74; c = 1. In this case is, however,

$$N_{74}(2+\varrho) = 2^{37} - 1 > 74L + 1.$$

Now, to be able to decide for some more values of u, whether the norm $N_u(2+\varrho)$ is divisible by a prime p of the form p=ul+1, l>L, we make some simple transformations. $(2+\varrho)$ and its conjugated numbers are either prime to each another, or have a prime ideal divisor of u as common factor, contain therefore only prime ideals of first degree; hence, $N_u(2+\varrho)$ may only be divisible by a divisor of u and by primes of the form ku+1. Let us denote by $N_u(2+\varrho)$ the number deriving from $N_u(2+\varrho)$, having divided with the divisors of u. Denoting by T_0 :

$$T_0 = \frac{N'_n(2+\varrho)-1}{\mu}$$
,

if among the numbers

(12)
$$T_k = \frac{T_0 - k}{uk + 1} < L \qquad (k = 0, 1, ..., t)$$

there is no integer prime, $N_u(2+\varrho)$ is not divisible by a prime p = ul + 1, l > L. This follows simply, as $N_u(2+\varrho)$ has only divisors of the form $\equiv 1 \pmod{u}$.

If u = 74, (12) gives t = 0; $T_0 = \frac{2^{37} - 2}{74} = 3714566310$ and this is no prime. On the other hand is

$$\frac{(2^{37}-1)\cdot(2^{37}+1)^{1/2}}{(2+1)^{1/2}\cdot3^{18}}<74L+1.$$

u = 76. In (12) is again t = 0 and $T_0 = 1466725826$ is no prime. In (10) we must substitute a = 1 and b = 19 and then is

$$\frac{(2^{38}+1)^{1/2}\cdot (2^{19}-1)\cdot (2^2+1)^9}{(2^2+1)^{1/2}\cdot 3^{18}}<76L+1.$$

u = 80.

$$N_{80}(2+\varrho) = \frac{2^{40}+1}{2^8+1} < 80L+1.$$

In (10) we must take a = 5, b = 16:

$$\frac{(2^{40}+1)^{1/2}\cdot (2^8+1)^2\cdot (2^5+1)^4}{(2^8+1)^{1/2}\cdot (2+1)^4\cdot 3^{16}}<80L+1.$$

u = 82; c = 1. In (12) is t = 4. $T_0 = 26\,817\,356\,775$ is no prime and T_1 is no integer.

$$\frac{(2^{41}-1)^{3/2}}{3^{20}}<\dot{8}2L+1.$$

u = 86; c = 1. In (12) is t = 4. $T_0 = 102\,280\,151\,421$ is divisible by 3; T_1 , T_2 , T_3 and T_4 are no integers.

$$\frac{(2^{43}-1)^{3/2}}{3^{21}}<86L+1.$$

u = 88. In (12) is t = 0. $T_0 = 11759482650$ is no prime. In (10) we take a = 1, b = 22:

$$\frac{(2^{44}+1)\cdot(2^2+1)^{10}}{(2^4+1)\cdot3^{20}}<88L+1.$$

u = 92. In (12) is t = 6. $T_0 = 152\,975\,530\,821$ and $T_3 = 552\,258\,234$ are no primes; the other T's are no integers. In (10) we set a = 1 and b = 23:

$$\frac{(2^{46}+1)^{1/2}\cdot (2^{46}-1)^{1/2}\cdot (2^2+1)^{11}}{(2^2+1)^{1/2}\cdot 3^{22}}<92L+1.$$

u = 94; c = 1. In (12) is t = 63, $T_0 = 1497207322929$, $T_{25} = 636838504$, $T_{48} = 331754337$ are not primes; the other T's are not integers.

$$\frac{(2^{47}-1)^{3/2}}{3^{46}} < 94L+1.$$

u = 98. In (12) is t = 1. $T_0 = 45\,231\,395\,904$ is no prime, T_1 is no integer. In (10) we set a = 1, b = 14

$$\frac{(2^{49}-1)\cdot(2^7+1)^3}{(2^7-1)\cdot(2+1)^3\cdot3^{21}}<98L+1.$$

u = 100.

$$N_{100}(2+\varrho) = \frac{2^{50}+1}{2^{10}+1} = 1\,098\,438\,933\,505.$$

$$N'_{100}(2+\varrho) = 219 687 786 701.$$

In (12) is t = 0 and $T_0 = 2196877867$. This is, however, no prime ³):

$$T_0 = 23.41.2329669$$
.

In (10) we set a = 1 and b = 25:

$$\frac{(2^{50}+1)^{1/2}\cdot (2^{50}-1)^{1/2}\cdot (2^2+1)^{10}}{(2^{10}+1)^{1/2}\cdot (2^{10}-1)^{1/2}\cdot 3^{20}}<100L+1.$$

u = 110. In (12) is t = 0 and $T_0 = 5161519113$ is no prime. In (10) we set a = 1, b = 22:

$$\frac{2^{55}-1)\cdot (2^5+1)^5}{(2^{11}-1)\cdot (2+1)^5\cdot 3^{20}}<110L+1.$$

We can summarize our results in the following

Theorem. If l is an odd prime and one of the numbers ul+1, u=2, 4, 8, 10, 14, 16, 20, 22, 26, 28, 32, 34, 38, 40, 44, 46, 50, 52, 56, 58, 62, 64, 68, 70, 74, 76, 80, 82, 86, 88, 92, 94, 98, 100, 110, is a prime, the equation

$$x^{l}+y^{l}+z^{l}=0$$
,

has no integer solution x, y, z such that $l \nmid xyz$.

(Received May 15, 1951.)

³⁾ I wish to thank here to Tibor Bakos who had determined the prime divisors of the above number.