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On completely integrable systems

By Y. VILLARROEL (Caracas)

The objective of this paper is to give a geometric formulation, using
contact theory, for differential systems of order k and dimension n over a
differentiable manifold. In the case k = 1 we obtain the classical Frobenius
theorem.

Let (M, N, π) be a fibred manifold and JkM the k-jets bundle of
cross-sections of (M, N, π). Two functions defined on a neighborhood of
X ∈ JkM are and identified, and the equivalence class is called a germ of
functions at X. The set of all germs at X is denoted by ΩXJkM . Given
an open set U ⊂ JkM , let ΩU =

⋂{ΩX , X ∈ U}.
A System of Partial Differential Equations (P.D.E.) of order k in

(M, N, π) is defined as an open set U in JkM , together with a locally,
finitely generated, subsheaf of ideals Φ of ΩU [3]. The set U is called the
domain of the S.P.D.

A cross-section f of (M,N, π) is said to be a solution of the equation
Φ = 0 (or a solution of Φ, for simplicity) if and only if, for any x ∈ Dom f ,
the jet jk

xf is in the domain of Φ and F (jk
xf) = 0, for any F belonging to

Φ. If jk
x0

f = X0 we say that f is a solution at X0.
An integral jet X of a S.P.D. Φ, with domain U, and order k is a k-jet

X ∈ U such that F (X) = 0, for all F belonging to Φx. The set of all the
integral jets of Φ is denoted by JΦ. A cross-section f of (M, N, π) is then
a solution of Φ if and only if jk

xf ∈ JΦ, for all x ∈ Dom f .
A system Φ of order k defined on a fibred manifold (M, N, π) is said

to be completely integrable at X0 ∈ JΦ if there exists a solution f of Φ
at X0.

Denote by Ck,nM , the contact bundle of order k of n-dimensional
submanifolds in M , and by Ck

xS the contact element of order k at x ∈ S ⊂
M [2].
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Given an imbedded submanifold W ⊂ Ck,nM , we will define an asso-
ciated system of partial differential equations Φ in (V, U, π), where V ⊂ M
is an open subset fibered over the open set U ⊂ Rn. We will give suf-
ficient conditions on W for the complete integrability of Φ. Moreover, if
X0 ∈ W and S ⊂ M is an n-submanifold such that Ck

xS ∈ W , for all
x ∈ S and Ck

x0
S = X0 then, we can obtain a solution of Φ using a local

parametrization of S in a neigborhood of x0.
This allows us to give a geometrical interpretation of a completely

integrable system of order k, using contact theory.
For k = 1, the submanifold W defines a integrable distribution on M ,

yielding the classical Frobenius Theorem.

1. Jet theory and completely integrable systems

Let (M, N, π) be a fibred manifold, and f , g two cross-sections whose
domains contain x0 ∈ N . Let k be an integer, k ≥ 0. We say that f and
g are k-equivalent at x0 if the following condition is satisfied:

For any fibred chart (x, y), where the domain of (x) contains x0, and
for any partial derivative ∂l in (x) of order l ≤ k we have: ∂lf j(x0) =
∂lgj(x0), where f j = yj ◦ f (resp. gj = yj ◦ g) is the expression of f (resp.
of g) in terms of (x, y).

If f is a cross-section whose domain contains x0, the equivalence class
containing f is called k-jet of f at x0 and will be denoted by jk

x0
f . Denote

by Jk
x (M, N, π) the set of all k-jets at x of cross-sections of (M, N, π), and

by Jk(M,N, π) the set of all k-jets of cross-sections of (M, N, π). We shall
write Jk

xM (resp. JkM) when there is no possibility of confusion.
If X = jk

xf , we set α(X) = x and β(x) = f(x), thus α (resp. β) is
a map of JkM into N (resp. N), which is called the source map (resp.
target map).

Denote by Il = (i1, · · · , il) an ordered l-uple of integers 1, · · · , n, with
n = dim N .

Let (xi, y
j) be a fibred chart defined on U ⊂ N . If X = jl

x0
f is in

β−1(U) and f j(x) is the expression of f , then (x, y, pj
Il(X)), 1 ≤ l ≤ k,

will be called the chart of JkM associated with (x, y), where

pj
Il(X) =

∂l

∂xi1 · · · ∂xil

f j(x0).

We consider the manifold structure on JkM given by these charts.

We have that (JkM, N, α) and (JkM,N, β) are fibred manifolds.
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For l ≤ k, consider the map

πk
l : jk

xf ∈ JkM 7−→ jl
xf ∈ J lM,

then (JkM, J lM, πk
l ) is also a fibred manifold [1].

Two functions defined on a neighborhood of w ∈ M are identified if
they coincide in some neighborhood of w. The equivalence class is called
germ of functions at w. The germ of a function φ at w will be denoted by
[φ]w. The set of germs of functions at w is a ring, and will be denoted by
ΩwM .

We set ΩM =
⋃{ΩwM ; w ∈ M}· If Φ is a subset of ΩM , we set

Φw = Φ ∩ ΩwM .
A function φ defined on an open set U ⊂ M is said to be in Φ (denoted

φ ∈ Φ) if [φ]w ∈ Φ, for any w ∈ U .
The set Φ is called a subsheaf of ΩM if the following two conditions

are satisfied for any w ∈ M :
1) Φ is not empty,
2) For any a ∈ Φw we can find a function φ defined on a neighborhood

of w such that a = [φ]w and φ ∈ Φ.
If U is an open subset of M and Φ is a subsheaf,

⋃{φx; w ∈ U} is
a subsheaf of ΩU and is called the restriction of Φ to U . A subsheaf Φ
of ΩM is called a subsheaf of ideals when Φw is an ideal of ΩwM for any
w ∈ M .

Let F1, . . . , Fs be a finite set of functions defined on an open set U ∈
M , and Φw, w ∈ U , the ideal of ΩwM generated by [F1]w, . . . , [Fs]w.
Then Φ =

⋃{φw; w ∈ U} is a subsheaf of ideals of ΩU which is said to be
generated by ΩU .

A subsheaf of ideals is said to be locally finitely generated when its
restiction to an open neighborhood of each point is finitely generated.

A system of partial differential equations (P.D.E.) of order k in
(M, N, π) is an open set U ∈ JkM , together with a locally finitely gen-
erated subsheaf of ideals of ΩU. The set U is called the domain of the
P.D.E. .

An integral jet of a P.D.E. Φ, with domain U, of order k, is a k-jet
X ∈ U such that F (X) = 0, for all F ∈ Φ. We denote by JΦ the set of
integral jets of Φ.

A a solution of Φ is a cross-section f of (M, N, π), defined over an
open set U ⊂ α(U) such that, for any x ∈ U , the jet jk

xf ∈ U. If X0 ∈ U
and jk

x0
f = X0, with x0 ∈ U , we say that f is a solution of Φ at x0.

Let F1, . . . , Fs be a finite set of functions on an open set U ∈ JkM .
Then the subsheaf Φ of ideals of ΩU generated by F1, . . . , Fs is a S.P.D.
of order k.
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Assume that U is contained in the domain of the chart (x, y, pj
Il)

associated with a fibred chart (x, y). Then a cross-section f = (x, f j) is
a solution of the equation Φ = 0 if f j(x) is a solution of the system of
partial differential equations

Fr(jk
xf) = 0, 1 ≤ r ≤ s.

The system Φ is complete at X ∈ U if for any function F , defined on
an open set V ⊂ U , which vanishes on JΦ ∩V, the restriction of F to an
open neighborhood of X belongs to Φ.

Let F be a function defined on an open set U ⊂ JkM and θ a vector
field on α(U) ⊂ N . The formal derivative of F with respect to θ, denoted
by ∂#

θ F , is a function on (πk+1
k )−1(U) defined as follows:

∂#
θ F : jk+1

x0
f 7−→ θx0(F ◦ jkf),

where jkf : Dom f −→ JkM is defined by x 7−→ jk
xf . This definition is

independent of the choice of representative f [3].
Let Φ be a P.D.E. with domain U ⊂ JkM . For any

Xk+1 ∈ (πk+1
k )−1(U) = U′, let (pΦ)Xk+1 be the ideal of germs at Xk+1

generated by

{F ◦ πk+1
k , ∂#

θ F ; F ∈ ΦXk , θ ∈ χ(α(U))}.
The subsheaf of ideals of ΩU′ generated by (pΦ)XK+1 , with Xk+1 ∈

U′, is called the prolongation of Φ and denoted by PΦ.
Given Xk ∈ JkM denote by QXkJkM (or QXk when there is no

possibility of confusion) the set,

QXk = kernel {dπk
k−1 : TXkJkM −→ TXK−1Jk−1M}

and CXkΦ the vector subspace defined by

CXkΦ = {v ∈ TXkQXk : v(F ) = 0; F ∈ ΦXk}.
This subspace is called the Symbol of Φ at Xk.

A system of partial differential equations Φ is said to be completely
integrable at X ∈ JΦ if the following conditions are satisfied:

1) CXΦ = 0,
2) The image of J(PΦ) by πk+1

k is a neighborhood of X in JΦ,
3) Φ is complete at X.
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Theorem 1. Assume that a P.D.E. Φ of order k is completely inte-
grable at X ∈ JΦ. Then there is a solution f of Φ at X; moreover, the
germ of f at α(X) is uniquely determined.

Proof. (see [3]).

A system of partial differential equations Φ, with domain U, is regular
at X ∈ Φ if:

i) JΦ is a submanifold on a neighborhood of X,
ii) there exist functions {F1, · · · , Fs, Fi ∈ Φ}, where s + dim JΦ =

dimU, such that, {dF1, · · · , dFs} are linearly independent at X (as ele-
ments in T ∗XU).

Proposition 1. Let Φ be a regular S.P.D. defined on an open set
U ⊂ JkM . Suppose that JΦ is a regular submanifold in JkM , fibered on
U ⊂ N by α, then

J(PΦ) = Jk+1M ∩ J1(JΦ, U, α).

Proof. Let X ∈ J(PΦ) be an integral jet of the prolongation of Φ,
defined by X = jk+1

u f and

HX = Tu(jkf)(TuU).

It is clear that if Y ∈ J(PΦ) then,

X = Y ⇐⇒ HX = HY ,

then X can be identified with the subspace HX . Moreover, X ∈ J(PΦ) if
and only if HX ⊂ Tπk+1

k (X)JΦ, indeed:

X ∈ J(PΦ) ⇔ F (X) = 0, and ∂#
xi

(F ◦ Jkf)|X = 0, F ∈ Φ

⇔ ∂

∂xi

∣∣∣
u
(F ◦ jkf) = 0 & F (X) = 0, F ∈ Φ

⇔ Tu(jkf)
(

∂

∂xi
(F )

)
= 0 & F (X) = 0

⇔ Tu(jkf)
(

∂

∂xi

)
∈ TX(JΦ).

On the other hand, a (k + 1)-jet X ∈ PΦ if and only if there exists a
section σ : U −→ JΦ such that X = j1

α(X)σ. This is clear because, as we
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have shown, HX ∈ Tπk+1
k (X)JΦ. In consequence, we have:

X ∈ J(PΦ) ⇔ X = jk+1
u f, f : U −→ V ⊂ M section

& X = j1
uσ, σ : U −→ JΦ section

⇔ X ∈ Jk+1M ∩ J1(JΦ, U, α). ¤

2. Contact manifolds and jet theory

Let M be a smooth (n+m)-dimensional manifold, k an integer, k ≥ 0,
and J̃k

0 (Rn,M) be the k-jets at 0 of maximal rank maps from Rn into M .
Given X1, X2 ∈ J̃k

0 (Rn,M) with β(X1) = β(X2) = x ∈ M . We say
that X1 and X2 are equivalent at x ∈ M if there exist Y ∈ J̃k

0 (Rn,Rn)
such that X2 = X1 ◦ Y .

A class of this equivalence relation is called the contact element of
order k and dimension n at x, denoted by [jk

xf ]. Let Ck,n
x M denote the

set of all contact elements of order k at x, and Ck,nM the set of all k-
contact elements of dimension n on M .

Let S ⊂ M be an imbedded n-dimensional submanifold and f , g, two
local parametrizations of S at x ∈ M over a neighborhood V ⊂ M , with
f(0) = g(0) = x, then

g−1|V ∩S : V ∩ S −→ Rn

is a local diffeomorphism and

h = g−1 ◦ f : A ⊂ Rn −→ B ⊂ Rn

is a local diffeomorphism such that jk
0 f = jk

0 g ◦ jk
0 h, thus [jk

0 f ] = [jk
0 g].

The equivalence class [jk
0 f ] is called the contact element of order k of

S at x ∈ S and denoted Ck
xS.

Two imbedded submanifolds S1, S2 have contact of order k at x ∈
S1 ∩ S2 if there exist local parametrizations given by imbeddings

f1, f2 : U ⊂ Rn −→ M

and a local coordinate system (V, yj), 1 ≤ j ≤ m, about x ∈ M such that
f1(0) = f2(0) = x and the partial derivatives at 0 of yj ◦ f1 and yj ◦ f2 are
equal up to order k.
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Remarks.
1. Cleary C1

xS1 = C1
xS2 if and only if TxS1 = TxS2.

2. Given a map f : U ⊂ Rn −→ M of maximal rank defined on a
neigborhood U ⊂ Rn, with f(u) = x ∈ M , and τu the traslation in Rn

such that τu(0) = u. Then,

jk
0 (f ◦ τu) ∈ J̃k

0 (Rn,M) & [jk
0 (f ◦ τu)] ∈ Ck,n

x M.

Let X ∈ Ck,nM and f : Uf=Dom f −→ V ⊂ M such that [jk
0 f ]=X.

Consider a local coordinate system (V, ϕ = (xi, yj)), 1 ≤ i ≤ n,
1 ≤ j ≤ m, such that:

xi ◦ f = ξ , the canonical coordinates in Rn.
Denote by π : Rn+m −→ Rn the canonical projection.
Then (V, Uf , ρ), with ρ = π ◦ ϕ, is a fibred manifold, said to be

associated to X, and f is a cross-section.
Define a neighborhood V of X as:

V = {Y = Ck
uh(U) ∈ Ck,nV : h : U −→ V section, u ∈ U}.

Let
Ψ : Jk(V,U, ρ) −→ V

given by
Ψ(jk

uf) = [jk
0 (f ◦ τu)],

this map is a bijection and will be denoted by Ψ, when there is no possi-
bility of confusion.

A coordinate neighborhood at X = [jk
0 f ] is given by:

(Ψ−1(U), η ◦Ψ−1),

where (U, η) is a coordinate neighborhood at jk
0 f ∈ JkV .

Consider the manifold structure in Ck,nM given by all coordinate
neighborhoods defined above.

With this differential structure the natural projections,

ρk
0 : Ck

xS ∈ Ck,nM 7−→ x ∈ M, & ρk
l : Ck

xS 7−→ Cl
xS ∈ Cl,nM

are submersions, and the natural injections,

ik : x ∈ S 7−→ Ck
xS ∈ Ck,nM

and

ik+1 : Ck+1
x S ∈ Ck+1,nM 7−→ C1

Ck
xS(CkS) ∈ C1,n(Ck,nM)

are immersions.
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Moreover we have the differential map

Ψ1,k : J1(JkV, α, U) −→ C1,n(Ck,nV )

defined by
j1
u(σ) 7−→ C1

σ(u)(Ψ(σ(U)).

3. Differential systems of order k and dimension n

Definitions. By a differential system of order k and dimension n in
M we mean an imbedded submanifold W ⊂ Ck,nM .

A solution of a differential system W at X ∈ W , is a n-dimensional
imbedded submanifold S ⊂ M , with x = ρk

0(X) ∈ S, such that CkS ⊂ W
and Ck

xS = X.

Example. Let D be a differentiable distribution of n-planes defined on
M . By Remark 1, we can identify a plane Dx ∈ D with a contact element
Dx ∈ C1,nM . Consider the map,

ϑ : x ∈ M 7−→ Dx ∈ C1,nM.

If D is a differentiable distribution, then this map is an imbedding,
and ϑ(M) is a differential system of order 1 and dimension n in M .

Moreover, if D is an involutive distribution, then the differential sys-
tem W has solution.

Definition [5]. The first prolongation of a submanifold W ⊂ Ck,nM
is defined as:

PW = C1,nW ∩ Ck+1,nM,

where Ck+1,nM is identified with its image by i1,k in C1,n(Ck,nM)·
Theorem. Let W ⊂ Ck,nM be an imbedded submanifold such that

the following conditions are satisfied:

1) ρk
k−1 : W −→ Ck−1,nM , is a local immersion in a neighborhood

of X ∈ W .

2) ρk+1
k : PW −→ W is a local submersion in a neighborhood of X,

then there exists a solution S ⊂ M of the differential system W passing
through X. Moreover, if S̃ is another submanifold of W passing through
X, then there exists an open set A ⊂ M , x = ρk

0(X) ∈ A, such that

S ∩A = S̃ ∩A.
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Proof. Let f : U ⊂ Rn −→ V ⊂ M , x ∈ V be an immersion such
that X = [jk

0 f ], and (V, U, ρ) the fibered manifold associated to X given
above.

Let
Ψ : U ⊂ JkV −→ V ⊂ Ck,nV

be the local diffeomorphism defined above.
Let F1, · · · , Fs be differentiable functions defined in a neighborhood

of X (also written V), such that:

V ∩W = {X ∈ V : F1 = · · · = Fs = 0}.
Consider the system of partial differential equations Φ of order k in

(V, U, ρ) with domain U = Ψ−1(V), generated by {Gj = Fj ◦ Ψ}. Let
Y = Ψ−1(X).

We will verify that Φ satisfies the hypothesis of Theorem 1.
First, we observe that the integral jets JΦ are given by Ψ−1(W ).

Indeed:

Y ∈ JΦ ⇔ Gj(Y ) = 0 ⇔ (Fj ◦ Φ)(Y ) = 0 ⇔ Φ(Y ) ∈ W.

Now, by hypothesis ρk
k−1 : (W ∩V) −→ Ck−1V is an immersion, then

πk
k−1 : (JΦ ∩U) −→ Jk−1V ,

is also an immersion and the kernel of TY πk
k−1 vanishes, i.e.

TY πk
k−1(TY QY ) = 0,

where QY is defined above.
Then

TY πk
k−1(TY JΦ ∩ TY QY ) = TY πk

k−1(CY (Φ)) = 0,

in consequence, the symbol CY (Φ) of Φ at Y ∈ JΦ vanishes, and condi-
tion 1) of Theorem 1 is verified.

To verify that πk+1
k : J(PΦ) −→ JΦ is a local submersion we consider

the commutative diagram:

C1,kV
i1,k

−−−−→ C1(CkV )

Ψk+1

x
xΨ1,k

Jk+1V −−−−→
ĩ1,k

J1(JkV )

where,
ĩ1,k : jk+1

u g ∈ Jk+1V 7−→ j1
jk
ug(j

kg) ∈ J1(Jk, U, α)
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is the natural immersion [4].
Now using Proposition 1 we have,

Z ∈ J(PΦ) ⇔ Ψ1,k(Z) ∈ C1,nW ∩ Ck+1,nV = PW.

Hence Ψ1,k(JΦ) = PW .
Now, by hypothesis:

ρk+1
k : PW −→ W

is a local submersion and

Ψk ◦ πk+1
k = ρk+1

k ◦Ψk+1.

Consequently:
πk+1

k : P (JΦ) −→ JΦ,

is a local submersion, and condition 2) of Theorem 1 is satisfied.
Finally, Φ is complete in Y because it is a sheaf of ideals generated

by functions which vanish on the regular manifold (Ψ)−1(W ∩V).
It follows that Φ is a completely integrable system of partial differen-

tial equations. Hence, there exists a solution γ of Φ such that:

γ(0) = x, jk
0 γ = X, & jk

uγ ∈ JΦ, u ∈ Uγ .

Let S = γ(Uγ), then clearly S verifies:

x ∈ S, Ck
xS = X, CkS ⊂ W,

in consequence S is a solution of W at X ∈ W .
If S̃ is another solution of W at X, then Ck

xS = Ck
x S̃.

In particular TxS = TxS̃ and therefore there are a fibred manifold
(V, U, ρ), associated to X, and parametrizations γ, γ̃ of S and S̃, respec-
tively, which are sections of the fibred manifold (V, U, ρ).

Since S (resp. S̃) is solution of W at X we have: jkγ ⊂ JΦ (resp.
jkγ̃ ⊂ JΦ), and jk

0 γ = jk
0 γ̃. Then by uniqueness of germ solutions of

completely integrable systems, there exits an open set B ⊂ Rn such that
γ|B = γ̃|B .

Let A = ρ−1(B), then S ∩A = S̃ ∩A.

Remark. For k = 1 the submanifold W defines a Frobenius system.
Indeed:

By condition 1) ρ1
0 : −→ M is a local immersion in a neighborhood V

of X.
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Then it is possible to define a section σ = (ρ1
0|W∩V)−1. Also we can

find coordinate neighborhoods (V, xi, j
j) and (V, xi, y

j , pj
i ) of x and X

respectively, such that the section σ can be expressed as,

σ(xi, y
j) = (xi, y

j , F j
i (xi, y

j)), with F i
j : V −→ R.

Then the manifold W defines a differentiable distribution D generated
by:

Li =
∂

∂xi
+

∑
F j

i

∂

∂yj
.

This distribution is involutive if and only if:

∂F j
i

∂xk
+

m∑

l=1

∂F j
i

∂yl
F l

k =
∂F j

k

∂xi
+

m∑

l=1

∂F j
k

∂yl
F l

i .

By condition 2) we have:

ρ2
1 : C1,nW ∩ C2,nM −→ W.

is a local submersion.
Then given Z ∈ W , there exits Z2 ∈ C1,nW ∩ C2,nM such that

ρ2
1(Z

2) = Z.
Since Z ∈ C2M we have:

pj
ik(Z) = pj

ki(Z).

Moreover, Z ∈ C1,nW then we have:

Z2 = (xi, y
j , F j

i , ∂#
xk

F j
i ), ∂#

xk
F j

i =
∂F j

i

∂xk
+

m∑

l=1

∂F j
i

∂yl
F l

k .

In consequence,

pj
ik(Z2) = ∂#

xk
F j

i (xi, y
j) = ∂#

xi
F j

k (xi, y
j) = pj

ki(Z
2),

and the involutivity of the distribution D defined above is verified.

References

[1] C. Ehresmann, Les prolongements d’un espace fibré differéntiable, C.R. Acad. Sci.
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