Simply harmonic affine Space's of symmetric connection.

By H. S. RUSE in Leeds (England).

§ 1. Harmonic Riemannian spaces.

Consider, in the small, a Riemannian n-space R" for which
(1.1) ds* —eg;;dx dx (e==x1),

the metric being not necessarily positive definite. Let P,, (xi), be a fixed
point of R", and P, (x'), a variable point, and let s — s(x,, x) be the length
of the arc of the geodesic, assumed to exist and to be unique, joining P,, P.
Further, let?1)

(1.2) Q- —%—-es’,

where e is the indicator of the geodesic P,P. Then R" is called centroharmonic®)

with respect to the base-point P, if J4,2-— ..1__ _'{—. g7 ||g ﬂ is a func-
l. g X\ ax'

tion of £ only, say

1,0 = f(Q),
not involving xi or x' explicitly. The R" is called completely harmonic if this
holds for all base-points P,. If the function f happens to be a constant, the
space is called simply centroharmonic or simply harmonic according as the
relation holds for one base-point or for all base-points. The constant value
of f is then necessarily equal to n.

Very little is yet known about harmonic spaces in the large. Many of
them, indeed, are of indefinite metric, and global theories of Riemannian
spaces of indefinite metric are almost non-existent. Recent work on fibre
bundles has broken new ground, but the present paper is confined to local
properties of the spaces discussed.

1) 1 have been accustomed in previous papers to omit the indicator e in (1.1) and
(1. 2), allowing s to be imaginary along geodesics for which e = —1:cf. Syncg, Proc. London
Math. Soc., 32 (1931), 242, | now follow A. G. WaLker in inserting the indicator e, with
the understanding that s is always real. The same function £ is thus defined. When the
geodesic P, P is null, the function s(x,, x) still exists as an analytic entity, the equation
s(x,, x) =0 being that of the null cone of P,.

%) In previous papers the term used has been cenfrally harmonic.
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The concept of a completely harmonic Riemannian space, depending as
it does upon the idea of geodesic arc-length, does not extend naturally to
non-metrical spaces. It has recently been noticed by E. M. PATTERSON,?)
however, that the infinite sequence of relations?) satisfied in a simply har-
monic analytic Riemannian space by the curvature tensor and its derivatives
can be used, mutatis mutandis, to define a simply harmonic affine space of
symmetric connection. It is the purpose of this paper to give a direct defini-
tion of such a space, whether analytic or not, and to apply it to re-establish
a theorem of PATTERSON on the Riemann extension of an affine space.

§ 2. Definition of a simply harmonic affine space
of symmetric connection.

Let A" be an n-dimensional affine space of coordinates (x’) and symmetric
connection 77,. The differential equations of the paths, referred to an affine
parameter f, are

X oy BT R

(=5 7 SRl A T

Consider the path through P,, (xi), of given direction a' :—-‘ (:;-) at P,. Take
t— 0 at P,. The equations of the path are of the form : -

(2.2) X = 0i(x,, af),

where x,,a are written for (x;,...,x;) and (a',...,a"). If we put
(2.3) ¥y = a'{,

then (2.2) becomes

(2.4) xi = @'(x,,)

and gives the transformation®) from the x-coordinates to Riemannian normal
coordinates )’ of origin P,, (2.3) being the equation in normal coordinates
of the path a'.
Let Y'(x,,x) be the contravariant vector defined by

dx'

s

where the right-hand side is calculated from (2.2) and the a't are then
eliminated by means of (2.2) to give Y' as a function of the x; and x". Then:

(2.5) Y =t

3) E. M. Patterson, J. London Math. Soc., 27 (1952), 102—107.

i) See, e. g., A. G. WaLker, Proc. Edinburgh Math. Soc., 7 (1942), 25,

) If the allowable transformations of coordinates in A" are of class C’, rfinite, then
the coefficients of connection are to be assumed of class C7, and the transformation (2.4)
to normal coordinates also of class C"~°. Normal coordinates for a space of finite class
may be called specially allowable, a term used in a similar connection by Magrstox Mogsk,
Calculus of variations in the large, (1934), p. 108.
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Definition. The affine space A" of symmetric connection 77, is simply
centroharmonic with respect to the base-point P, if

(2. 6) : Yii=n,

the semicolon denoting covariant differentiation with respect to the x’s and
the connection 77, and is simply harmonic if

(2.7 Yi=1

for all base-points P,. _

When the A" is Riemannian, the /7. being Christoffel symbols and ¢
the arc-length s, this definition agrees with that of a simply harmonic
Riemannian space. For in that case, as is well known,

ds dx’

(2.8) T € Y ds
for any given geodesic, whence, multiplying by es,

dx’

Qe =835

the comma denoting covariant differentiation with respect to the Christoffel
symbols. Raising the suffix i/, we get
dx'
ds’
which may be compared with (2.5). Since J,Q— Q' ;, the agreement of (2. 7)
with the definition for Riemannian spaces is apparent. That Y' plays a part
in an affine space similar to that played by £' in a Riemannian space was
noted by SYNGE.')

A simply harmonic A" will be called an SA".

Using an asterisk to denote the components of any geometric object in
the normal coordinate system y’, we have, by (2.5) and (2. 3),

(s —

T Y

(2.10) Gt
— ]"..
Hence
Ly - f.Y s Woal ® e

(2. II) Y:f:_(;y‘- o g.f Y

= + .l”:. y",
so the condition for A" to be simply centroharmonic with respect to P, is
(2.12) Tj:y=0. ;

If the A" is analytic, "1, ) may be expanded in a well known way °) as a

®) O. Vesren, Invariants of quadratic differential forms, Cambridge Math. Tract, 24
(1924), p. 90, (6.4).
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series in the ', the coefficients being affine normal tensors evaluated at P,.
Because of (2.12), the coefficients in this series are all zero, and we obtain
the infinite sequence of relations?) used by PATTERSON, though in a different
form, as the basis of the definition of an SA". :

Y' is a contravariant vector at the point (x') whose components in the
normal coordinate system happen to be ). It is convenient here to introduce
the n functions Y"(x,, x), distinguished from the components of the vector
Y'(x,, X) by having a bracketed suffix, defined as follows. Let the transfor-
mation inverse to (2.4) be

J"' ¥ 1;!". (xuy x)r

and define . ‘
YO = — y¥(x,, X).
Thus
e

(2.13) T 7
that is,

Y\ X'
(2. 14) YW = t‘dr,..'

Thus the Y are the components of a vector af P,, transforming, under x— X,
according to :

70— (LX),

X )

unlike Y', whose law of transformation involves the derivatives ¢ X' dx’ evaluated
at P. In other words, Y'(x,, X) behaves like a scalar with respect to x, and
a vector with respect to x’, and vice-versa for Y(x,, x). It is easy to see
that, in fact, Y is obtainable from Y’ by an interchange of x/ and x', that is,

(2. 15) ; YO (x,, x) = Y'(x, x,).

§ 3. Riemann extension of an affine space of symmetric connection.

As before, let A" be an affine space of coordinates (x) and symmetric
connection [7,. Letc;; be a given symmetric covariant tensor in A", and let
R*" be the Riemannian space of 2n dimensions, of ¥) coordinates (x“) = (x', x),
for which
(3.1 ds® = Gapdx" dx’ = (c; —2T; 5) dxi dxi + 2dx d&;,
where & has been written for x, the term 2dx' d; meaning 23 dx"dx". The

i) Cf. E. T. Corsox and H.S. Ruse, Proc. Roy. Soc. Edinburgh, 60 (1939—40), 130,
or A. Licinerowicz, Bull. Soc. Math. de France, 72 (1944), 156,

®) Unprimed Latin suffixes will continue to run from 1 to n. Primed Latin suffixes
will run from n-1 to 2n, with the understanding that /" — n /. Greek suffixes will run
from 1 to 2n,
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space R”" is called®) a Riemann extension of the affine space A". Under a
transformation of coordinates x — x in A", the form of ds* is preserved pro-
vided that & is transformed as a covariant vector of A", ¢; as a tensor and
I'; as an affine connection.

PATTERSON ) has shown that, if R* is simply harmonic, so is A", and
conversely. In this section | obtain a formula for £ in R™, and use it to
prove a slightly stronger form of Patterson’s theorem, namely that, if R™ is
harmonic, then it is simply harmonic and so is A"; with PATTERSON’s con-
verse that, if A" is simply harmonic, so is R™.

The fundamental tensors g.; and g** in R™ are given by

(3.2) g = C;i—2I58, gi = gri= 6;, gry = 0;
(3_ 3) g-'_f — 0, '2_,-,., gj'-‘ = 0V, gl"j' — —gii}
while

(3.4) g = det [gap| = (—1),

the d’s being Kronecker symbols.
Of the Christoffel symbols | ¢, of R™, those for which @,y —
=1,2,...,n are given by
Y e
¢ =Ta
Hence the first n of the differential equations
&’x" )« | dx? dx

(3.5) s

187\ds ds —°
of the geodesics of R™ are the differential equations

d’x' . dx dx
39 e T gs s
of the paths of A", with s as affine parameter.

Let Q, (xf) = (xi, xi) = (x), &), be a fixed point of R*, and consider
the geodesic joining this to the point Q,(x®)=(x',&). A first integral of
dx® dx’ '
ds ds

=0

equations (3.5) iS Zu; — e, that is,

t_f_x" d.jcf' o XS

Wi e
e=@g—2tuN e 2w
By (3.6) this is
> dx' dx/ ) ax]
EEQTs dr  Cds ™ ds\

9) E. M. Parrersox and A. G. Wacker, Quarterly J. of Math. (Oxford) (2), 3 (1952),
19—28.
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Integrating with respect to s from Q, to Q, we obtain a formula for the
length s of the geodesic Q,Q, namely

: iR L ade X o0 dx') |
(3.7) £ b F(x, x) + 2‘-.-. ds = Uds Jo\’

s dxidxi
2z | “"ds ds
upon x, and x' only, and not upon & or £

Multiplying (3.7) by %s using (1.1) and (2.5), (2.14) with ¢ duly

D

where F(x..,x)— ~ds is a scalar depending, as is easy to see,

identified with s, we obtain, for R

(3 8) . F‘(xmx) "EiYi'l-‘:-.Y(’)'
Y and Y, like F, bemg independent of &, &.
In R™,
Jis‘!;_-:- —ll' .rtl'_”":_zi
”x“ £ (X"

a ( .8 a8

— oxe (g‘ ;x’l by (3, 4),
s o Q 0l ( g 082 )
=23 ax' 01‘: 0E; _g“ é&;

by (3.3) and the fact that x" — &. By (3. 8) this gives

Yi
| o J— —
sl e 2ur‘ (g"Y)
2‘i+21 Y by (3.2),
that is,
(3.9) 4,0 = 2Y:,.

If R* is completely harmonic, 4,2 is a function of €. But 2 depends
upon & and &, while the right-hand side of (3.9) does not. Hence , 2 must
be a constant, and R™ simply harmonic, and so

(3.10) 4,0 = 2n,
whence
{(3-11) Yiian

and A" is simply harmonic. Conversely, if (3.11) is true, so is (3.10), and
this completes the proof of Patterson’s theorem and its converse. If R™ is
initially assumed to be merely centroharmonic with respect to (xi) instead of
completely harmonic, the theorem remains true if the word harmonic is prefixed
everywhere by centro.

(Received October 5, 1951.)



