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¥ Remarks on isotopies.

By DAviD ELLIS in Gainesville, Florida (U. S. A.).

§ 1. A generalized commutative law.

Let G(*)= G be a groupoid. G(*) will be called generalized Abelian
(abbreviated g. A.) provided there are four permutations P, Q, R, and S of G
so that: .

(1) xP'yQ=yR'xS; (for all x,y in Q).
The “law” [1] is suggested by the generalized associative law (restricted

to permutations) of T. EvAns [6]. EVANS law is:

(2) ((xA*yB)C*2D)E — (xF*(yG*"zH)I)J; (for all x,y,z in G),

where A,B,C,D,E,F,G,H,I and J are permutations of G. The law [2]

arises naturally if one seeks an isotopy invariant generalization of associativity.
Analogously we have

Theorem 1. If G(*) and H(-+) are isotopic groupoids then G(x) is
g A. if and only if H(+) is g. A..

Proof. Since the g. A. property is obviously an isomorphism invariant,
it suffices by the principal isotopy theorem [2] to show that the proposition
is valid for principal isotopes G(*) and G(--). Let (1) hold and let M and
N be permutations of G(*) with x*y=xM-+yN for all x,y in G(%). Then
XPM-+yQN-—yRM-+xSN and G(-+) is g.A.. Since principal isotopy is
an equivalence relation, the g.A. property for G(- ) implies the g. A. property
for G(x).

Corollary. A necessary condition that a groupoid be isotopic to an Abelian
groupoid is that it be g. A..

Theorem 2. If G(*) has a unit e and is g. A., then there exists a
permutation V of G(*) such that

(3) xy=yV'xVv (for all x,y in G(%)).
Moreover, if eV is idempotent, G(%) is Abelian.
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Proof. Let G(*)have unit e and satisfy (1). Unless otherwise specified, a

and x are arbitrary elements of G(x). W is the identity mapping of G(x).
L: and R; denote, respectively, the left and right translations (in G(%)) of
G(x) by the element f. Products of mappings are to be read from left to
right. From (1) we have
(4) x'y—yUxV with U=Q'R and V=P'S.
Then, L,=UR.y and R,= VL.y-VL.w=R.=W and eV '=eL. ;=

(eU)e — eU. Applying (4) twice, one finds R, — VUR.;v so that
R.— VUR,;y — VUR.— VU= W and U=V '. Suppose now that ¢ V*eV—
=eV. Ry = VL.viv = VL.= V. Thus, eVR.r—eV'eV=eV and eVV=¢V
so that e=eV and V=R.v= R.— W.

Theorem 3. A semigroup with unit which is g. A. is Abelian.
Proof. Using (4) and the associativity one obtains L, L. \-1R.y . =
R.R.vL.y-1 =R, W—R,.
Lemma 1. (T. Evans (6).) If G(*) is finite or is a quasigroup and if
G(*) has a unit, then G(x) is associative if and only if G(*) has a law (2).
Combining lemma 1 with theorems 1 and 3 and theorem 1 A of BRUCK’s

paper [2], and recalling that both the Evans law and the g. A. law are isotopy
invariants, we obtain the following characterization theorem:

Theorem 4. A quasigroup (finite groupoid with left and right non-
singular elements) is isotopic to an Abelian group (Abelian semigroup) if and
only if it is g. A. and is associative in the sense of (2).

§ 2. Isotopy of semilattices.

Let G(x) and H(-{) be semilattices [5] in what follows.

Theorem 5. Any homotopy') of G(x*) onto H(--) induces a homomorphism
of G(%) onto H(-}-) which is actually the single mapping of the homotopy.
Proof. Let A, B, and C be (single-valued) mappings of G(%) onto
H(+) so that (a*0)C—=aA+bB for all a,b in G(*). Now, aC— (a*a)C—
aA-+aB. Thus, aC-}+bC —=(aA-+aB)+(bA-+-bB) —(a*b)C+(b*a)C =
= (a*0)C+(a*b)C=(a"b)C and C is a homomorphism.
Remark. The above proof uses all the assumptions concerning G(*) and
H(+) except the associativity of G(*).
Corollary. Two semilattices are isotopic if and only if they are isomorphic.

Remark. The equivalence of isotopy and isomorphism for semigroups
with unit is well known [2]. As might be anticipated, idempotency in both
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and commutativity in one of two isotopic semigroups ensure isomorphism
regardless of the existence of units.

It has been observed several times in the literature (cf. [1], [4], [5])
that two lattices are isomorphic if and only if their join (meet) semilattices
are isomorphic. The author has shown that a semilattice admits a second
operation to form a lattice if and only if it possesses the property M defined
in [5]. M is obviously an isomorphism invariant. Thus we have

Theorem 7. A semilattice admits a second operation to form a lattice
if and only if it is isotopic to a semilattice of a lattice and in this case the
two lattices are isomorphic.
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