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Contribution to lattice theory.

By K. ISEKI in Osaka (Japan).

Introduction.

Several authors have considered the characterization of special classes
of lattices: modular, distributive, Boolean, etc. Recently the theory has been
developed by Indian mathematicians and K. MATsumoTO, T. MICHIURA. This
paper is also devoted to a discussion of the same problem.

The work is divided into four sections. In the first section, we shall
give a brief summary of well known notions and results which are needed
in the sequel. Some of them are found in the articles of G. BIRKHOFF [1]')
G. BIRKHOFF—O. FrINK [1], N. BourBaki [1] and K. ISEkI [5]. In the second
section, we shall show that a distributive lattice may be characterized by a
meet-irreducible filter. The result was published in my note [1] with a brief proof.
Further, we shall discuss certain results of M. F. SMILEY—E. PITCHER [1]
and G. PICKERT [1]. In the third section, we shall give the condition for a
distributive lattice with O and 1 to be a Boolean algebra, by use of the
results of the second section. In the final section O. FRINK's result [1] is
generalized to atomic lattices.

In this article the terminology and notation introduced by G. BIRKHOFF
[1] will be used without any further reference.

§ 1. Preliminary notions.

In this section, we shall consider the elementary facts relating to our
discussion.

Let L be a lattice with least element 0. A filter F is a subset of the
lattice L which satisfies the following conditions:

1. 0¢F.

2. If acF and x =a, then x¢€F.

3. If a€F, beF, then aNbEF.
(For the concept of a filter see N. BourBAKI [1] or P. SAMUEL [1]).

1) Numbers in brackets refer to the bibliography at the end of this paper.
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Definition 1. A filter of a lattice L is said to be prime if aUbeF
implies a€F or bEF.

Definition 2. A filter U of a lattice L is said to be maximal or ultra-
filter if there exists no filter containing U.

Definition 3. A filter F is said to be meet irreducible if it is not the
set intersection of two filters each = F.

The following lemma is due to G. BIRKHOFF and O. FRINK [1].

Lemma 1. Any prime filter is meet-irreducible. Conversely, in a distri-
butive lattice, all the meet-irreducible filters are prime.

Proof. Let F be a prime filter. If it is not meet-irreducible, there exist
two filters A, B such that
F==ANB, A3=F=+B8.
Therefore there exist two elements a, b such that
adF, acA and b¢F, beB.
Since A, B are filters, aUb€ AN B— F. By definition 1, a€ F or b€F. This
shows that F is meet-irreducible.
Conversely, let F be meet-irreducible but not prime in a distributive
lattice L. We can take two elements a, b such that
aUbEF, a&F, bgF.
Define two filters F«a, F%b by
Fea={x|x=aNf,;f€F}, Fab={x|x=bNf;fEF).
We have (Fxa)(F«b)DF. Let x be any element of the set (F«a)N(F = b),
then we have x = aNf, f'Nb, f, f'€F and
x=(fNfNnaufnsfnb)=Nf)Hu(anbd).
This means (Fxa)(F*b)— F. The lemma is therefore proved.

Definition 4. We say that a lattice L has WALLMAN property (briefly
W-property) if for a > b, there exists an x such that aNx==0, bNx=0.

Definition 5. L is called U-separated, if there exists for any two of its
elements an ultrafilter containing one element, but not the other.

Similarly we can define p-separated elements as follows.

Definition 6. L is called p-separated if for any two of its elements
there exists a prime filter containing one element, but not the other.

These notions were first introduced in my recent articles [7], [8]. By
this “U-separatedness”, we can prove the

Theorem 1. Every pair of distinct elements of a lattice L is U-separa-
ted if and only if L has the W-property.
Proof. For details, see K. ISEKI [5].
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§ 2. Characteristic properties of distributive lattices.

In this section, we shall prove the theorem mentioned in the introduc-
tion. For this purpose. we shall prove the following

Lemma 2. /f a principal filter F,— |x|a = x} does not contain an
element b, there exists a meet-irreducible filter G such that F,.c G and b& G.

Proof. The class of all filters containing F, is ordered by set inclusion.
Consider the linear ordered set F.(« < £2) in this class, and the set sum

UF,,, then UF,; is a filter which contains F, but not b. The class, ordered

-hy set mdusmn, is inductive. By ZORN’s lemma, there exists a filter G with
the maximal property: F,c G and b¢ G. The lemma will be proved if we
show that G is meet-irreducible. Let G be the set intersection of two filters
G, G.. If beG,, G,, then G- G,N G,. Consequently one of them does not

contain b. Suppose b& G,; then G— G,. This shows that G is meet-irre-
ducible.

Theorem 2. A necessary and sufficient condition for a lattice with O
to be distributive is that every meet-irreducible filter be prime.

Proof. 1t is obvious from Lemma 1 that condition is necessary. To prove
the converse, we shall verify the ORE condition®): aUx—=05bUx, aNx—5b6Nx
imply @ — b. Suppose a == b, then either the principal filter F, of a does not
contain b or this is the case for the principal filter F, and a. If b&F., by
Lemma 2 there exists a meet-irreducible filter G containing F, but not b.
Since by our hypothesis G is prime, aUx=>bUx€G, b¢G imply x€G.
This shows that aNx=56Nx€G. Therefore b€G, which is a contradiction.
Similarly, ag¢F, leads to a contradiction. Hence a= b. This completes the
proof.

M. F. SmiLey and E. PITCHER [1] generalized the GLIVENKO [1] defini-
tion of metric betweenness for an arbitrary lattice L. For three elements
a,b,ceL, b is between a and c¢ if and only if

@nd)UdnNe)y=b=(@Ub)N(bUc).

We shall use the' notation abc to show that b is between a and c¢. One of
their results was to characterize distributive lattices by a relation between
DuTHIE’s segment and betweenness. Following W. D. DUTHIE, we define the
segment <a,b> of a, b as the set {x aNb=x=aUb).

Theorem 3. A lattice L is distributive if and only if for every pair
a,belL, <a,b>>x implies axb. (See M. F. SMILEy—E. PITCHER [1].)

Proof. Let L be a distributive lattice, then aNb = x=aUb implies
(@Nx)U@®Nx)=xN(@VUb)=x and also dually (¢ Ux)N(bUx)=x.

2) See O.-Ore [1] or V. Guwvenko [1].



Contribution to lattice theory. 197

Conversely, consider a, b,x€L such that a Ux=56Ux, aNx=>0Nx,
then we have

aNx=bNx=b=bUx-—aUx,
bNx=a=5b6Ux.
Thus b€ <a,x>, a€ (b, x . By the hypothesis we have
b=(@nNb)UdNx)=(@nb)U(aNnx)—a.
Therefore L is distributive.
Theorem 4. A lattice is distributive if and only if from

(1) a,b=cUd.
(2) alNc=>bNc

(3) (avVe)ANd=(®BUc) /d,
there follows a —b. :

A similar theorem on modular lattices has recently been proved by G.
PICKERT [1].

Proof. Let L be a distributive lattice satisfying (1) (2) and (3). Then

cV({@vVeyrdy=(cV@Ve)N(cUd)=(@Uc)N(cUd)=aUc
cV((bVeyhd)y=(cU@BU))N(cUd)=(bBUc)N(cUd)=bUc.
By (3) we have aUc~ bUc. Hence

b—=®BUc)Nb—=(@Uc)Nb=(@Nb)UBdNc)—(@nNb)U(aNc)
=aUBNc)=aU(aNc)=a.

Conversely, suppose alc=0bN¢, aUc—=>bUc in any lattice L. To complete
the proof that L is distributive, we shall shov a-—b. Let d- aUb, then
a,b=cUd, and (aUc)Nd=>bUc)Nd. Thus L satisfies (1) (2) and (3). This
shows a—b.

Using the notion of p-separatedness, we have already characterized
the distributive lattices.

Theorem 5. The necessary and sufficient condition for a lattice with O
to be distributive is that every pair of distinct elements of L be p-separable.

Proof. See K. Iseki [8].

With the help of Theorem 5, we can now obtain the following

Theorem 6. A [attice with O is distributive if and only if every filter
is the meet of all prime filters containing if.

Proof. Let L be a distributive lattice, and F a given filter in L. Suppose
a€L—F; by the Lemma 2, there is a meet-irreducible filter M such that
adM and FcM. By Theorem 2 we see that M is a prime filter. This shows
that F is the meet of all prime filters containing F. The converse follows
easily from theorem 5.
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§ 3. Some criteria for Boolean algebras.

Combining well known results, we shall give in this section some con-
ditions for a lattice to be a Boolean algebra.?)

Theorem 7. A distributive lattice with O and 1 is a Boolean algebra
if and only if every meet-irreducible filter is maximal.

Proof. If L is a Boolean algebra, then by Theorem 2. every meet-
irreducible filter is prime. On the other hand, in any Boolean algebra the
prime filters are maximal. Conversely, by Lemma 1., the prime filters are
meet-irreducible in any lattice. Therefore if every meet-irreducible filter is
maximal, all prime filters are maximal. By a theorem of L. NACHBIN [1] and
L. RiEGER [1], if L is distributive, it is a Boolean algebra.

Following S. Pankajam [1], we define the product complement and sum
complement of an element in a lattice as follows.

Definition 7. The product complement of an element a in a lattice with
0 is defined as the element a' for which

aNa" =0
holds, and for every x, ax- 0 implies x = a'.

Definition 8. The sum-complement of a in a lattice with 1 is defined
as the element a* for which aUa®—1, and for every x, aUx—1 implies
a'=x

The product complement and the sum complement are necessarily
unique if they exist.

Definition 9. A lattice in which every element has a product comple-
ment is called a lattice with product complement.

Similarly we can define a lattice with sum complement.

Theorem 8. A necessary and sufficient condition for a lattice L with
product complement to be a Boolean algebra is given by the requirement that
every element a of L be normal: a” -~ a, where a” — (a’)'.

Proof. This theorem has been proved in more general form for semi-
lattices. For details, see P. SAMUEL [1] or K. ISEki [8].
From this, the following theorem can be easily deduced:

Theorem 9. If a complete lattice satisfying the infinite distributive law:
xn(U}’u)= = U(x ny«)v

has the W-property, then it is a Boolean algebra. (See T. MICHIURA [1].)

%) The theory of Boolean algebras was extensively studied by M. H. Stone [l]. In
the sequel, we shall use his terminology.
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Proof. Let a' be the join of all x such that aNx-— 0. By the infinite
distributivity,

aNa=aNUx)=U @Nx)=0,

and ax=0 implies x = a’. This shows that @’ is the product complement
of a. Define a” = (a’), then we have a”" —a. Clearly a” = a; now suppose
a’ ==a. By the W-property there is an y such that a”"Ny =0, afy=0.
Therefore from y = @’ we have 0 —a'Na” = a”Ny which contradicts a” Ny == 0.
Hence L is a Boolean algebra.

Corollary. /n a complete lattice, satisfying the most general distributive
law?*), the W-property implies isomorphism with the set-algebra.

The proof. follows by the Theorem 9 and TARsKI's celebrated theorem
(see A. Tarski [1]).

Now consider a congruence relation on a lattice.

Let F be a filter. The elements q, b are said to be congruent with res-
pect to F

a=—b(F)

if there exist n, ¥ in F such that aNx=560Ny.

Dually we define the congruence with respect to an ideal /.

Definition 10. A subset I of L is an ideal in L if and only if

1) a, b€l implies aUbel;

2) a€l and a = x imply x€l.

The elements a, b are called congruent for /
axb(l)
if there exist elements x,y in / such that aUx-— bUy.

Clearly we have an equivalence relation :

1) a—=a(F); 1) a=za(l);

2) a=b(F)—>b=a(F); 2) a=xb(l)—b=xa(l);

3) a=bb=c(F)—»a—c(F); 3) azbb=zxc(l)—a=c().

This induces a partition of L into disjoint subsets of equivalent ele-
ments called residue classes. Following V. S. KRISHNAN, we define the last
residue class of a filter or an ideal. The last residue class of a filter F (an
ideal 7) is defined as the residue class which contains 0 (1) of L, and it is
denoted by F" (I').

In a distributive lattice with O and 1, the last residue class of a filter
(an ideal) is an ideal (a filter).

Lemma. For any filter F or ideal I of a distributive lattice with O and 1,
‘c«l CF, IlﬂC !-

1) See W. Sierrinski, Algébre des ensembles. Monografie Mat. 23 (1951), p. 178,
or R. Vaipvanatuaswamy [2].
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Proof. See V. S. KRISHNAN [1].

Theorem 10. For a Boolean algebra,
Fnl - _F’ ’flu i l.

Proof. Let a be an element in F. The relation: @' Na—=0Na =0 shows
that @’ is contained in the last residue class of F, F'. Next we show a€F".
Since F" is an ideal, by the Lemma 0€ F",

adlUa=1U0=
and so a€F".

Conversely, we can give a characteristic property of Boolean algebras
which was proved by T. MICHIURA [1]:

Theorem 11. A necessary and sufficient condition for a distributive
lattice with O and 1 to be a Boolean algebra is that F" —F be true for
every principal filter (or 1" =1 for every principal ideal).

From this we infer

Corollary 1. A necessary and sufficient condition for a distributive
lattice with O and 1 to be a Boolean algebra is that every filter (or ideal) be
the last residue class of its last residue class.

Corollary 2. Each filter of a Boolean algebra is the last residue class
of one and only one ideal, and its dual.

Proof. Let F be a filter; as F"=F, F is the last residue class of the

ideal F". Suppose F— [|=1}, where /,, /, are ideals.
L=R"=F'=IY=I,.

This completes the proof.

| state here an unsolved problem: Is any distributive lattice with 0 and
1, each ideal of which is the last residue class of one and only filter,
necessarily a Boolean algebra?

The concept of BROUWERIAN algebra was introduced by A. TArskl and
J. C. C. MckINsEy. This structure is defined to be a lattice L with 0, satis-
fying the following axioms:

1. L is closed under a binary operation -=-.

2. a=b=c and b.- = aUc are equivalent for a, b, c€ L.

Ja-=1-=a is called the Brouwerian complement of a.

Lemma. Any Brouwerian algebra is a distributive lattice with sum-
complement.

Proof. 1t is known that such a Brouwerian algebra is a distributive
lattice. 7 @=1-=a means by the axiom 2) JaeUa= 1. Similarly aUb- 1
means TJa=1-a = b. Hence 7] a is the sum complement of a.

By the Lemma, we have
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Theorem 12. A necessary and sufficient condition for a Brouwerian
algebra with 0 to be a Boolean algebra is that, for every a in L,

aNa=0.

§ 4. Atomic lattices with W-property.

An element which covers O in a lattice with O is called an atom. A
lattice L will be called atomic if every non-zero element in L contains at
least one atom. The definition of atomic lattice is found in O. Frink [1].

Following O. FriNk [1], we shall define the representation set of an
element @ in the atomic lattice L. By r(a), we mean the set of all atoms x
of L such that x = a.

Theorem 13. An element a of an atomic lattice with W-property is the

join of all elements in r(a): a= U x.
xer(r)

Proof. For a-— 0, the theorem is obvious. Suppose a=-0: for xé€r(a)
we have x = a. This means that @ is an upper bound of elements in r(a).
Let b be an upper bound of elements in r(a) such that b < a. Since L has
the W-property, there is a non-zero element ¢ such that b6N¢=0, ¢ = a.
Since L is atomic, there exists an atomic element x such that x = a. There-
fore r(a) must contain x: x€r(a). By the property of b, b= x, this however
is a contradiction. @ must be the join of the elements of r(a).

Theorem 14. An atomic lattice L with W-property is isomorphic with
the lattice of all represantative sets of L.

Proof. It is sufficient to show the following three properties:

(1) r(@)Nr(b)=r(anb)

(2) r(@Ur(b)~—r(@Ub)

(3) a = b-—r(a) ==r(b).

Let x be an element of r(aNb), then aNb = x. Therefore x = a, b. This
shows x€r(a)Nr(b). Hence r(aNb)< r(a)Nr(b). Since xér(a)Nr(b), we
have x = a, b. Hence x€r(aUb). This completes the proof of the relation (1).
The relation r(a U b) > r(a) Ur(b) is obvious. We shall show that r(a U b) is the
join of r(a) and r(b). Let r(c) be a representative set such that r(c) > r(a), r(b)
and r(aUb)d=r(c). Then there is an atom x such that x =aUb and x <-c.

By Theorem 13 we have a= U y= U z=c¢ and b = c. This shows
ver()  zer(e)

x =aUb = ¢ which is a contradiction. To show the implication (3) we prove
that r(a) = r(b) implies a=»5. This follows immediately from Theorem 13.
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