On the conjugate mapping for quaternions.
By K. ISEKI in Osaka (Japan).

In this note we give two axiomatic definitions of the conjugate mapping

in the quaternion skew field over the real field.
We shall use the symbols 1,4, /, k to denote the base of the quaternions

which satisfies the following multiplication relations:
,'2 :f.' k‘_’ e l,
ij=—ji=k, jk=—kj=i, ki=—ik=]..

Therefore a quaternion x may be represented in the form x — x, + x,i -+ x3/ -+
+ x.k with real coefficients x; (/- 1,2, 3,4). By the conjugate number X of
x, we shall mean x-— x,—x,i—x,/j—x,k. Under the norm | x|| of x we shall
understand [|x| = 4 |/xx = + | xi - x4+ x2+x. Then the norm so defined
satisfies the condition ||xy| = x| |/y|. Let f(x) be a mapping of the qua-
ternion field into itself. We shall prove the following theorems which give the
necessary and sufficient conditions for f(x) to be the conjugate of x.

Theorem 1. f(x) is the conjugate of x if and only if it satisfies the

conditions :
(1) f(x) is continuous at zero (with respect to the norm),

(2) fx+y) =1+ 1),

(3) f(x)==x for every real x,

@) fD=—1i f()=—/, and f(k)=—*k.

Theorem 2. f(x) is the conjugate of x if and only 'if it satisfies the
conditions :

(1) f(x) is continuous at zero,

(2) xf(x)— f(x)x,

(3) xf(x) is real for every x,

(4) x-f(x) is real for every x.

Analogous theorems for complex numbers have been obtained by St.

GoLAB').
If f(x)— X, then f(x) satisfies obviously the conditions of the theorems.

Proof of theorem 1. f(x) may be expressed in the form e, a,i-- e
-+ @,k with real functions e; — a;(x,, X,, X5, X;), (i=1,2,3,4), where x — x,+

1) St. Goras, Sur une définition axiomatique des nombres conjugués pour les nom-
bres complexes ordianires. Opuscula Math. 1 (1937), pp. 1-11.
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+ X, + Xof + X, k. From f(x-+y)=f(x)+f(y), we have
a, (x!! Xay Xy, xl) + az(xn Xa,y Xy, xl)i + “3(."(, y X2y X3, x-l)j"l““d(xn Xa, X, X;)k—l—
+@,(31, Yoy Vs Yo) + @00, ¥y Vs V)i a5, Vs Vis YT+ @01 Vs V55 V) K =
= a&,(X; 4 Y, XoF Yo, X3+ Vs, Xy -+ V) + @ (X1 41, Xo 4 Yoy X5+ Y5, X+ V)i 4+
+ “::(xl + Y15 Xa+ Vi, Xs+ Vs, Xi+ Jh).H— al(xl + Vi, X+ Yo, Xs+ Vs» Xo+ )’;)k
This implies that the «; (i=1,2,3,4) are linear:
@i(X1, X2, X35 X))+ €i(V1, Vo5 Vi Vi) = @i+ Y1, Xa+ Yoy X5+ Vi, Xi i)
Moreover, condition (3) implies
a,(x,,0,0,0)—x,,
ai(x:,0,0,0)=0 (=23, 4).
Let g:(x,) = @(0,x,,0,0), (i=1,2,3,4). Then g;(x.+y,) = 3:(x2)+ 5:(3.)
(i=1,2,3,4). From this we infer by the continuity of g.(x,) at zero, that
#:(x,) = ¢;x, where the ¢’s are real constants. Putting x = i, we have by condi-
tion (4) —i = f(i) — #(0) + 2.(1)i + .,(0)j + B,(0) k = ¢c,i. This yields ¢,— —1.
Similarly we have ¢, = ¢, = — 1. Thus we see that f(x) = x,—Xyi —x.j—x,k=Xx
which completes the proof. .
Proof of theorem 2. With the notation previously used we have
Xf(x) = (x,06,— X, @, — X;00,— X, @)
+ (Xt + Xy 00, — X 05+ Xy,) i
+ (Xge + X, @+ Xy 05— Xp2,) ]
+ (X @ —X; @y + Xy Xy @) K.
f(x)x = (x4, —x,@,— X;0,— X, ;)
+ (X e+ X0, — Xy, + X, @) 0
+ (X @+ Xatt, -+ Xy, — X, @) ]
+ (X, @, — X0, + Xy, — X, ) k.
By condition (2) we have
Xpl, ==X, 0, Xy0,==X,Q, Xj@ ==X;0.
Condition (3) implies
Xy @+ X, @, —X,@; + X;a, = 0,
Xy @ + X, @+ X, @, —Xa @, = 0,
X, e, — X, 8, + X, 0,4 x, ¢, =0,
i. e. according to our above equations,
xa +x0=—0 xae+xe=0 xa-+xe=0.
Condition (4) means that x,+4a, =0, x,+a,~— 0, x,+ «,= 0. Consequently
x,(x,—@a,) = 0. Then, for x,=-0, we have a, — X,. Hence f(x) = x,— Xoi —X,j — X,k
for x, -+ 0. By the continuity of f(x), f(x) = x for all quaternions x. This
completes the proof.
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