Proof of a conjecture of Kummer.

By PETER DENES in Budapest.

§ 1. Introduction.

E. KUMMER [1] stated without proof the following

Theorem. If n is a non-negative rational integer, p an odd prime,
S—eniv Q) the field of the p™ roots of unity over the rational number
field, ¢, ¢, are integers, prime to p, in £(Z) satisfying the congruence

(1) =¢q, - (mod p"'),
and if k is a rational integer, with (p—1) X k, then

Dh*" |0g ‘f'(ell) = D;.-;.n l()g (p.(e") (mod p]..1)’

where the symbol D,, log ¢ (e") denotes the value of the m™ derivative of log ¢ (e”)
with respect to v at v=0. ¢(e") results by setting e’ instead of < in ¢(5),
and e is the Naperian base.

H. S. VANDIVER [2] ascertained that KUMMER has not published any proof
of the above theorem and proved it first [3] in the special case ¢ —¢,, ¢(1)=
=¢,(1), n=1; then in a later paper [4] in the case ¢=—q,, ¢(1)=—¢,(1)
(mod p"*'). In 1939 Vandiver has mentioned that J. V. USPENSKY has proved
KUMMER’s above conjecture with the only restriction ¢ — ¢,, but this paper
was not yet published [5].

In this paper I give the complete proof of the above theorem (see § 3).
Prof. VANDIVER informed me in a letter of August 31, 1951, when I com-
municated him my proof that the paper of USPENSKY has not been published
because of his death and is not intended to be published in the near future.
I am giving therefore firstly in § 2 a proof for the result of USPENSKY, i. e. for
the case ¢ — ¢, of the theorem, which certainly differs from USPENSKY’s
proof who attained his result by correcting the methods of Kummer. On the
other hand, the proof given in § 2 (see Lemma (G) uses methods perfectly
different from KUMMER’s ones.
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§ 2. Lemmas.

We are beginning with the proof of some lemmas.
Lemma A. /f k and m are rational integers, and 0 < k < m, then
D, (] —e")”' =U.
The proof follows immediately from
K i
z (ld:e) —(—1)'m(@m—1)...(m—k+1) (1 —e")y" .

Lemma B. [f F(e") isa polynom of e the coefficients of which are rational
integers and F,=-0 denotes its value at »=0, then for k >0

F ¢ 1yi-1 e i
D, log Fley= > =D Dﬁ( F(e)—F, ] _
i=1 l " EI 4
Proof. We remark that if |[F(e")—F, < F,|, then
&y (—=1¥11{ ry— i

| m—
=1

Now, in

¢

Fe)=2 a,e

y=0

the coefficients a,, ..., a, are rational integers. We transform this polynom :

t
F(e") — _\_’ b,(1—e)

NE =)

where b,,..., b, are also rational integers, namely

= ] \'1 g
b:_(] ]) — 'lj,u_u'
Thus we have

F(e)—F,= 2 bj(1—e),
F=
as F,—b,. Hence

.| F€)=F:

F,

where B,,..., B;; are rational integers. By Lemma A we see that for i >k
F(e"—F, |~

Since log F, is a constant, we have the proof of Lemma B.

u'. ]

.D; ¥ Bi(1—ey,

;
1] )==i

Lemma C. If f, is a rational integer such that f,—F, (mod p), and
p X 1., then for positive integers k,u

D, log F(e') = i‘(-l)‘ L %D;, |FE}—_f ‘ (mod p")

holds, where w is a suitable positive integer.
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Proof. By hypothesis we have
F,_ﬁ| Mp
where M is a rational integer. Thus
t
F(e)—fi=Mp+ 2 b;(1—e,
and hence
i (i l)l‘
"D[ F(e)‘f— =D 2 2 Cp(i—eY,
i ffl g=0 j=i-g
where the C’s are ratmnal integers. The members on the right-hand side in which
the second index j of C is greater than k disappear according to Lemma A.
The remaining members, for j= k, are multiplied by the g™ power of p.
From the inequalities
kzj=i—g
we . get
gmm l_k-
We set now i=i'p" with p ¥ i'. We see, by p x f,, that the remaining members
are divisible by p» and so Lemma C is true if
g—r>u,
i.e., — as the most inadvantageous case iS g - Gyin — if
i'pr>k+4+u-r.
As p = 3, the inequality p* > k- u-}-2z has for any value of k--u a minimal
solution z==2,. Now putting
-,
the members with i = w on the right-hand side of

Dulog Fe)—Dilogfy+ 307 p,[ FEI—F |
i=l { _ f;'

are all divisible by p* which completes the proof.

Lemma D. If k is a positive intenger, with (p—1) x k, n — 0 a rational
integer, h(e’) a polynom of e’

t
(2) h(e)= 2 fe"
with rational integers f,, ..., f:, and

5
(3) g(er) - ;_" ok ]
then

(4) D;}.J. h(e)-g(e)=0 (mod p*1).
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Proof. If i is a non-negative rational integer, then we get

Dype'tgle) ="+ (i+ 1"+ ... +(i+p—1)",
and 7,i-1,...,i---p—1 represent a complete system of residues mod p. If r
is a primitive root mod p and w a member of this system, prime to p, then

w=r (mod p)
and
Wt = pkp® (mod p1),
where the number 2 takes all the values 1,2,..., p—1. Hence, as kp" =n-+1,
we have
rle=1kp"

Dyev-g(e) = = (mod p*7),
where (r'#"—1) is prime to p, as (p—1) ¥k and
rir-Dkp = | (mod p*1).
Consequently
) Diyei-g(e) =0 (mod p°1).

From (2) and (5) follows (4) immediately.

Lemma E. /f ¢ >0,s > 0,n = 0 are rational integers and h(e") is defined
by (2), then
(6) D,(p-1h(e’)-g*(e)=0 (mod p),
where z=—min [(s—1), (n-1)].

Proof. We put

{g)) = 2 i€,

i={)
where a. ,...,a. «, 1 are rational integers and
(p-Netp-{
fiehzte

A”"‘.: c}-l Ay, isip (i——O, l,--‘,P—l),
Jj=0
where [x] denotes the largest integer = x. Then
(7) Aii=prt (i=0,1,...,p—1).

(7) can be verified by induction. Assuming that it is true for s—1 instead of s,
we get from :
(g@)) =1g@E@)) (U +e+ ... +etD),
A;\,J — Aa-l.i_i_Aa—LH—l + e _J_An—l,p—l_{—A»—l.“-l_ i +A!—].f—l ‘"_:p'i’s.2 e “1"
As (7) is true also for s= 1, we have the proof of (7). Moreover we have
s(p-1)

(8) Dyp-nymel* -g*(e)= ‘}T; a., ;-(f‘i‘}')qw_”"".

If (i+/) is divisible by p, then (i-+4;)"» V" =0 (mod p), because of
D14
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g(p—1)p" >n-+1=2z; consequently, if we regard (8) as a congruence
module p7, all members fall out which are divisible by p. If, on the other
hand, p 4 (i), then

(+iyeIr=1 (mod p*),
or, as z2=n+1,
(i+jyre-vr= (mod p).
Thus, we get by (8) s
® p—‘l
Dygpipe™-g'(€) = 2 a.:=(p—1)p"" (mod pr),
and as s—1 = z, finally
Dy-1ype'-g(e)=0 (mod p)

which completes, by (2), the proof.

Lemma F. /f ¢>0, k>0, m=0,n=0 are rational integers, with
k<p—1, and h(e") is defined by (2), then

©) Dyyh(e)-g" (e) =0 (mod pr),

Proof. First we assume p>3 and m = 1, or, if p— 3, either ¢ > 1, or
m > 1. (Thus, the cases m -0, resp. p=—3 and c¢m =1 are excluded for the
present.) According to the law of differentiation of a product we have

l.';r_': ’k 1
(10)  Dirh(er)-g""(e)- 2( 7 ’-Dsﬁ(e')-g**"'2“"""'(t’")-Dm-,-"-vg"'"”"'_'(f’”)-

We assume that Lemma F is true for m—1 instead of m. In (10), the
number /i should be divisible by the j™ power of p:

i—=qp’  (P¥q,0=j=n).

Therefore by k < p the binomial coefficient (':;g,] is divisible by the (n—j)"

power of p: _
kp" ;
amn [_qﬁ,,-'] -0 (mod p*-).
If neither i, nor (kp"— i) is divisible by p—1, then we have, according

to our assumption that Lemma F holds for m—1 instead of m,

D,,ih(e)-g 2" (e)=0  (mod p"*)
and

Dy ig? " (€)=0  (mod p*)
from which follows by m >0: :
(12) (n—pD+m+)H+(m+j)=n+m+1.
If for example 7 is divisible by (p—1), then Lemma E can be used.
If p>3, then c(p—2)p"'= 2, as ¢>0 and m>0; therefore z=1. If p=—3
and mc > 1, then again z = 1, because of ¢.3"' = 2. Hence

D, h(e)-g 2" (e)=0 (modp), if (p—1)lg.
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Thus we have also in this case

(13) (n—)+G+m-+1=n+4+m+1,
and the same equation holds if (kp"—1i) is divisible by (p—1), because of
2¢p*' = 2. Both numbers i and kp*—i cannot be divisible at the same time

by (p—1), as 0< k< p—1. (12) and (13) give the exponent of the power
of p, by which the members on the right-hand side of (10) are divisible by
our assumptions.

Now in the case p-—3, mc=1 we have
Dyvetr.gi(e) = u**+3(u+ 1" +6 (u+20"*+T(u+ 3)*"* +
6(u-+4)" 3 (u+5)" - (u+ B
which can be transformed as a congruence modulo 3"**:
Dyriet.g*(e") =
={u*"* 4+ Tu?"*+7.3.3" k. " +u¥"*+6.3"ku" %1} +
{3 1 46 (u -+ 1) +6-3.3"k (w4 1)1} +
+{6(u+2)*"+3(u+2)y"* 4 3.3.3"k(u+ 2)*"*1} =
=9u*"* -9 (u+ 1"+ 9(u+2)"*=0 (mod 3"7%).
This proves, by (2), the validity of Lemma F in the case p— 3, m—1, c=1.

Hence, Lemma F is proved by the assumptions that m >0 and that
it is true for m—1 instead of m; to complete the induction, we must verify
it for the case m— 0:

Dy, h(e)-g(e’)=—0 (mod pt).
This follows, however, immediately from Lemma D, by setting in (4) instead
of h(e’) the polynom h(e){g(e")} .

Lemma G. /f n is a non-negative rational integer, k a positive integer,
(p—1) X k, @ is an integer, prime to p, in (%), and ¢, is another form of
g, then

D, log g(e') = Dy, log ¢,(e") (mod p+).

Proof. If ¢ is prime to p, also (1) is prime to p; hence Lemma B
implies that Dy~ log ¢(e") is a rational number the denominator of which is
prime to p. Consequently, it is congruent modulo p**' with a rational integer.

First we assume k< p—1. The two forms of ¢ satisfy a relation

() —9G)+v()Lg:)
where (5) is an integer in £(£) and

O =1+E++5""
From this follows
(14) gr(e7) =g (e) ¢ (e)-g(e)
and

(15) ¢ (1) =g(1) (mod p).
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According to Lemma C, we have, putting ¢(1)—gq,,

Dy~ log '!i(e“)i;f =4y --}-—-D,-.-,-'- l--q’@%:fp l (mod p+')
and, by (14), (15),

Dy, log ¢, (€)= > (— 1) :,..DL.,,. y(e)— ;r.'!’(e*)g@
=1 0
where w is a suitable natural number (in accordance with Lemma C).
Denoting by z.(e”) the following polynom of e

zi(€) = [p(e)—p) 7 [w(e)) (J=12...0,

(mod p')

we get
(16) Dy log ¢,(€7)— Dy, log ¢ (e7)
!I'_" r-_" : 1 o .
= 2 (=1 !—(;) Dy zii(e)-g'(e") (mod p').

=1 J=l

The terms of the sum in (16) have, by

s 1 [(i—1
':'_(f)'_' 'j"(j—l__'
the following form
., 1 [i—=1 _
(7 AE ey (j—l,) Dyyy;i(e’)-g7(€).
Supposing that j is divisible exactly by the a™ power of p, (17) is divisible
owing to Lemma F by p" with

b——a+4(n+a+1)—n+1.

Hence, all terms on the right-hand side of (16) are divisible by p**'. Thus we
have the proof of Lemma G for k< p—1.
Turning to the general case, consider a polynom

Ee)=x+xe+--- +x.e"

of e" where x,, ..., x, are rational integers. If j is a non-negative integer, the
congruence

(18) D;.y+E(€°) = Dysi (p-1) 7 E(€°) (mod p')
follows easily from the evident relation
x?‘.v" — x!.k—'—J(.v-Ulw" (mod p ).

From (18) we infer that (17) is divisible by p"*! also for k> p—1,(p—1) ¥ k.
This completes the proof of Lemma G.
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§ 3. Proof of the theorem.

Making use of Lemma G we can prove the validity of the conjecture of
KUMMER.

The integer ¢ of the field £2(5) has the form
¢=d,+dS+ - +d
where £, d,....,d, are rational integers. If f = p—2, ¢ is given in its normal
form and in this case we apply a star to distinguish it from any other form:
(19) ¢ =a+al+--+a.0".
Here a,, ..., a, » denote rational integers.
Another integer ¢, of £2(2) has also a normal form:
(20) P =bo b i+ 4 b, o
with rational integers b,,..., b, .. If the congruence (1) is true we have
¢ —¢* =(b—a)+ (b, —a)+ .-« +(by2—a,2)5"*=0 (mod p"*)
and, by setting 2= 1—_, we can write .
(21) o — ¢ =co el 4 oo+ 62 P=0  (mod p*t)

where ¢,,...,c,» are rational integers. We show that in (21) ¢,,...,¢,» are
all divisible by p**'. In fact, applying (21) as a congruence modulo the prin-
cipal ideal (%), we obtain that ¢, is divisible by (4) and, as ¢, is a rational
integer, it is divisible by p. Similarly modulo (4) we find that ¢, is divisible
by p, and so on, up to ¢, .. Now, dividing the integers ¢,, ..., ¢, » by p and
regarding (21) as a congruence modulo p", we can repeat the applied method
and find that the ¢’s are divisible by p*. This process can be repeated (n - 1)-
times, and finally we obtain

C="-=C2=0 (mod p"*').
Thus we get by

P_’i".
di—b;.-r(—l)*'zul-c, (k=0 1,..., p—2),
=k \ .

), = 0y, (modp'rtl) (k-—O,l,,P—z)
Hence we have

(22) g1 (€)= g () +p.-h(e),
where /i(e) is a polynom of e of a degree = p—2 with rational integer
coefficients.
Taking the first derivative of [log ¢7(e")—log ¢*(e")] with rescept to o,
we get by (22)
dy? dg* ) d'!(e) dg* (e)
dlog gi(e) dlogg”(e) d—»l' drv ”_r," r°(e) St SR 3 dv

dr dr - R G (e): TP g (e)h(e)
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and, continuing the differentiation, the m™ derivative is

d" log ¢} (e") d" log ¢* (e") L H(e’)

(23) do™ =y do™ R T R I Y T

: ; (g™ (e} +p g™ (e)h(e)]
where H(e’) is a polynom of e” with rational integer coefficients. Setting
»=0in (23), the denominator on the right-hand side is prime to p, as ¢ is
prime to p. Hence
(24) D, log ¢i(e") = D, log ¢*(e") (mod p)
for any rational integer m > 0. (24) yields, by Lemma G, the proof of the theorem.
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