Proof of a conjecture of Kummer.

By PETER DÉNES in Budapest.

§ 1. Introduction.

E. KUMMER [1] stated without proof the following

Theorem. If n is a non-negative rational integer, p an odd prime, $\zeta = e^{2\pi i/p}$, $\Omega(\zeta)$ the field of the p^{th} roots of unity over the rational number field, φ , φ_1 are integers, prime to p, in $\Omega(\zeta)$ satisfying the congruence

$$\varphi \equiv \varphi_1 \qquad (\text{mod } p^{n+1}),$$

and if k is a rational integer, with $(p-1) \chi k$, then

$$D_{kp^n}\log\varphi(e^r) \equiv D_{kp^n}\log\varphi_1(e^r) \qquad (\text{mod } p^{n+1}),$$

where the symbol $D_m \log \varphi(e^r)$ denotes the value of the m^{th} derivative of $\log \varphi(e^r)$ with respect to v at v = 0. $\varphi(e^r)$ results by setting e^r instead of ζ in $\varphi(\zeta)$, and e is the Naperian base.

H. S. VANDIVER [2] ascertained that Kummer has not published any proof of the above theorem and proved it first [3] in the special case $\varphi = \varphi_1, \varphi(1) = \varphi_1(1), n = 1$; then in a later paper [4] in the case $\varphi = \varphi_1, \varphi(1) \equiv \varphi_1(1)$ (mod p^{n+1}). In 1939 Vandiver has mentioned that J. V. USPENSKY has proved Kummer's above conjecture with the only restriction $\varphi = \varphi_1$, but this paper was not yet published [5].

In this paper I give the complete proof of the above theorem (see § 3). Prof. Vandiver informed me in a letter of August 31, 1951, when I communicated him my proof that the paper of Uspensky has not been published because of his death and is not intended to be published in the near future. I am giving therefore firstly in § 2 a proof for the result of Uspensky, i. e. for the case $\varphi=\varphi_1$ of the theorem, which certainly differs from Uspensky's proof who attained his result by correcting the methods of Kummer. On the other hand, the proof given in § 2 (see Lemma G) uses methods perfectly different from Kummer's ones.

§ 2. Lemmas.

We are beginning with the proof of some lemmas.

Lemma A. If k and m are rational integers, and 0 < k < m, then

$$D_k (1-e^r)^m = 0.$$

The proof follows immediately from

$$\frac{d^{k}(1-e^{r})^{m}}{dr^{k}} = (-1)^{k}m(m-1)\cdots(m-k+1)(1-e^{r})^{m-k}\cdot e^{kr}.$$

Lemma B. If $F(e^v)$ is a polynom of e^v the coefficients of which are rational integers and $F_0 \neq 0$ denotes its value at v = 0, then for k > 0

$$D_k \log F(e^e) = \sum_{i=1}^k \frac{(-1)^{i-1}}{i} D_k \left(\frac{F(e^e) - F_0}{F_0} \right)^i.$$

Proof. We remark that if $|F(e^v)-F_0|<|F_0|$, then

$$\log F(e^r) = \log F_0 + \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i} \left(\frac{F(e^r) - F_0}{F_0} \right)^i.$$

Now, in

$$F(e^v) = \sum_{g=0}^t a_g e^{gv}$$

the coefficients a_0, \ldots, a_t are rational integers. We transform this polynom:

$$F(e^r) = \sum_{j=0}^t b_j (1-e^r)^j$$

where b_0, \ldots, b_t are also rational integers, namely

$$b_j = (1-1)^j \sum_{g=j}^t {g \choose j} a_g$$
.

Thus we have

$$F(e^r) - F_0 = \sum_{i=1}^t b_i (1 - e^r)^j,$$

as $F_0 = b_0$. Hence

$$D_{k} \left[\frac{F(e^{e}) - F_{0}}{F_{0}} \right]^{i} = \frac{1}{F_{0}^{i}} \cdot D_{k} \sum_{i=1}^{i} B_{j} (1 - e^{e})^{j},$$

where B_i, \ldots, B_{it} are rational integers. By Lemma A we see that for i > k

$$D_k \left(\frac{F(e^v) - F_0}{F_0} \right)^k = 0.$$

Since $\log F_0$ is a constant, we have the proof of Lemma B.

Lemma C. If f_0 is a rational integer such that $f_0 \equiv F_0 \pmod{p}$, and $p \not \mid f_0$, then for positive integers k, u

$$D_k \log F(e^r) \equiv \sum_{i=1}^r (-1)^{i-1} \frac{1}{i} D_k \left[\frac{F(e^r) - f_0}{f_0} \right]^i \pmod{p^n}$$

holds, where w is a suitable positive integer.

208 P. Dénes

Proof. By hypothesis we have

$$F_0 - f_0 = Mp$$

where M is a rational integer. Thus

$$F(e^{r})-f_{0}=Mp+\sum_{j=1}^{t}b_{j}(1-e^{r})^{j},$$

and hence

$$\frac{1}{i} \cdot D_k \left[\frac{F(e^e) - f_0}{f_0} \right]^i = \frac{1}{i \cdot f_0^i} D_k \sum_{g=0}^i \sum_{j=i-g}^{(i-g)t} C_{gj} \cdot p^g (1 - e^e)^j,$$

where the C's are rational integers. The members on the right-hand side in which the second index j of C is greater than k disappear according to Lemma A. The remaining members, for $j \le k$, are multiplied by the gth power of p. From the inequalities

$$k \ge j \ge i - g$$

we .get

$$g_{\min} = i - k$$
.

We set now $i = i^* p^r$ with $p \nmid i^*$. We see, by $p \nmid f_0$, that the remaining members are divisible by p^{g-r} and so Lemma C is true if

$$g-r>u$$
,

i. e., — as the most inadvantageous case is $g = g_{\min}$ — if

$$i^*p^r > k + u + r.$$

As $p \ge 3$, the inequality $p^z > k + u + z$ has for any value of k + u a minimal solution $z = z_0$. Now putting

$$w=p^{\varepsilon_0}$$

the members with $i \ge w$ on the right-hand side of

$$D_k \log F(e^e) = D_k \log f_0 + \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i} D_k \left(\frac{F(e^e) - f_0}{f_0} \right)^i$$

are all divisible by p^n which completes the proof.

Lemma D. If k is a positive intenger, with $(p-1) \nmid k$, $n \ge 0$ a rational integer, $h(e^e)$ a polynom of e^e

$$h(e^{i}) = \sum_{i=0}^{t} f_{i} \cdot e^{iv}$$

with rational integers $f_0, ..., f_t$, and

(3)
$$g(e^{v}) = \sum_{i=0}^{p-1} e^{iv},$$

then

$$(4) D_{kp^n}h(e^v)\cdot g(e^v) \equiv 0 (\text{mod } p^{n+1}).$$

Proof. If i is a non-negative rational integer, then we get

$$D_{kp^n}e^{i\,v}\cdot g(e^e)=i^{kp^n}+(i+1)^{kp^n}+\cdots+(i+p-1)^{kp^n},$$

and i, i+1, ..., i+p-1 represent a complete system of residues mod p. If r is a primitive root mod p and w a member of this system, prime to p, then

$$w \equiv r^z \pmod{p}$$

and

$$w^{kp^n} \equiv r^{zkp^n} \pmod{p^{n+1}},$$

where the number z takes all the values 1, 2, ..., p-1. Hence, as $kp^n \ge n+1$, we have

$$D_{kp^n}e^{i\,v}\cdot g(e^v) \equiv \frac{r^{(p-1)\,k\,p^n}-1}{r^{kp^n}-1} \pmod{p^{n+1}},$$

where $(r^{kp^n}-1)$ is prime to p, as $(p-1) \times k$ and

$$r^{(p-1)kp^n} \equiv 1 \qquad (\text{mod } p^{n+1}).$$

Consequently

$$(5) D_{kp^n}e^{iv}\cdot g(e^v)\equiv 0 (\text{mod } p^{n+1}).$$

From (2) and (5) follows (4) immediately.

Lemma E. If q > 0, s > 0, $n \ge 0$ are rational integers and $h(e^v)$ is defined by (2), then

(6)
$$D_{q(p-1)p^n}h(e^r) \cdot g^s(e^r) \equiv 0 \pmod{p^s},$$
 where $z = \min [(s-1), (n+1)].$

Proof. We put

$$\{g(e^e)\}^s = \sum_{i=0}^{s(p-1)} a_s, i \cdot e^{i \cdot e},$$

where $a_{s,0}, \ldots, a_{s,s(p-1)}$ are rational integers and

$$A_{s,i} = \sum_{j=0}^{\left[\frac{(p-1)s+p-i}{p}\right]} a_{s,i+jp}$$
 $(i = 0, 1, ..., p-1),$

where [x] denotes the largest integer $\leq x$. Then

(7)
$$A_{s,i} = p^{s-1}$$
 $(i = 0, 1, ..., p-1).$

(7) can be verified by induction. Assuming that it is true for s-1 instead of s, we get from

$$\{g(e^{e})\}^{s} = \{g(e^{e})\}^{s-1} \cdot (1 + e^{e} + \cdots + e^{(p-1)e}),$$

$$A_{s,i} = A_{s-1,i} + A_{s-1,i+1} + \cdots + A_{s-1,p-1} + A_{s-1,0} + \cdots + A_{s-1,i-1} = p \cdot p^{s-2} = p^{s-1}$$
.

As (7) is true also for s=1, we have the proof of (7). Moreover we have

(8)
$$D_{q(p-1)p^n}e^{jv}\cdot g^s(e^v) = \sum_{i=0}^{s(p-1)} a_{s,i}\cdot (i+j)^{q(p-1)p^n}.$$

If (i+j) is divisible by p, then $(i+j)^{q(p-1)p^n} \equiv 0 \pmod{p^z}$, because of

210 P. Dénes

 $q(p-1)p^n > n+1 \ge z$; consequently, if we regard (8) as a congruence modulo p^i , all members fall out which are divisible by p. If, on the other hand, $p \nmid (i+j)$, then

$$(i+j)^{q(p-1)p^n} \equiv 1 \pmod{p^{n+1}},$$

or, as $z \leq n+1$,

$$(i+j)^{q(p-1)p^n} \equiv 1 \pmod{p^s}.$$

Thus, we get by (8)

$$D_{q(p-1)p^n}e^{j\,v}\cdot g^s(e^r) \equiv \sum_{s=0}^{s(p-1)} a_{s,\,i} \equiv (p-1)p^{s-1} \pmod{p^s},$$

and as $s-1 \ge z$, finally

$$D_{q(p-1)p^n}e^{j\cdot r}\cdot g^s(e^r)\equiv 0 \qquad \qquad (\text{mod } p^s)$$

which completes, by (2), the proof.

Lemma F. If c > 0, k > 0, $m \ge 0$, $n \ge 0$ are rational integers, with k < p-1, and $h(e^c)$ is defined by (2), then

$$(9) D_{kp^n}h(e^r)\cdot g^{ep^m}(e^r) \equiv 0 (\text{mod } p^{m+n+1}).$$

Proof. First we assume p > 3 and $m \ge 1$, or, if p = 3, either c > 1, or m > 1. (Thus, the cases m = 0, resp. p = 3 and cm = 1 are excluded for the present.) According to the law of differentiation of a product we have

(10)
$$D_{kp^n}h(e^v) \cdot g^{ep^m}(e^v) = \sum_{i=0}^{kp^n} \binom{kp^n}{i} \cdot D_ih(e^v) \cdot g^{e(p-2)p^{m-1}}(e^v) \cdot D_{kp^n-i}g^{2ep^{m-1}}(e^v).$$

We assume that Lemma F is true for m-1 instead of m. In (10), the number i should be divisible by the jth power of p:

$$i = qp^j$$
 $(p \nmid q, 0 \leq j \leq n).$

Therefore by k < p the binomial coefficient $\begin{pmatrix} kp^n \\ qp^j \end{pmatrix}$ is divisible by the $(n-j)^{th}$ power of p:

If neither i, nor $(kp^n - i)$ is divisible by p-1, then we have, according to our assumption that Lemma F holds for m-1 instead of m,

$$D_{q\,p} h(e^r) \cdot g^{c(p-2)\,p^{m-1}}(e^r) \equiv 0 \pmod{p^{m+j}}$$

and

$$D_{kp^n-q\,p^j}g^{2\,e\,p^{m-1}}(e^r)\equiv 0 \qquad (\operatorname{mod} p^{m+j})$$

from which follows by m > 0:

(12)
$$(n-j)+(m+j)+(m+j) \ge n+m+1.$$

If for example i is divisible by (p-1), then Lemma E can be used. If p>3, then $c(p-2)p^{m-1}\geq 2$, as c>0 and m>0; therefore $z\geq 1$. If p=3 and mc>1, then again $z\geq 1$, because of $c\cdot 3^{m-1}\geq 2$. Hence

$$D_{qp^j}h(e^r)\cdot g^{e(p-2)p^{m-1}}(e^r)\equiv 0\pmod{p}$$
, if $(p-1)|q$.

Thus we have also in this case

(13)
$$(n-j)+(j+m)+1=n+m+1,$$

and the same equation holds if (kp^n-i) is divisible by (p-1), because of $2cp^{m-1} \ge 2$. Both numbers i and kp^n-i cannot be divisible at the same time by (p-1), as 0 < k < p-1. (12) and (13) give the exponent of the power of p, by which the members on the right-hand side of (10) are divisible by our assumptions.

Now in the case p = 3, mc = 1 we have

$$D_{3^{n}k}e^{uv} \cdot g^{3}(e^{v}) = u^{3^{n}k} + 3(u+1)^{3^{n}k} + 6(u+2)^{3^{n}k} + 7(u+3)^{3^{n}k} + 6(u+4)^{3^{n}k} + 3(u+5)^{3^{n}k} + (u+6)^{3^{n}k}$$

which can be transformed as a congruence modulo 3^{n+2} :

$$D_{3^{n}k}e^{uv} \cdot g^{3}(e^{v}) \equiv$$

$$\equiv \{u^{3^{n}k} + 7u^{3^{n}k} + 7\cdot 3\cdot 3^{n}k \cdot u^{3^{n}k-1} + u^{3^{n}k} + 6\cdot 3^{n}ku^{3^{n}k-1}\} +$$

$$+ \{3(u+1)^{3^{n}k} + 6(u+1)^{3^{n}k} + 6\cdot 3\cdot 3^{n}k(u+1)^{3^{n}k-1}\} +$$

$$+ \{6(u+2)^{3^{n}k} + 3(u+2)^{3^{n}k} + 3\cdot 3\cdot 3^{n}k(u+2)^{3^{n}k-1}\} \equiv$$

$$\equiv 9u^{3^{n}k} + 9(u+1)^{3^{n}k} + 9(u+2)^{3^{n}k} \equiv 0 \pmod{3^{n+2}}.$$

This proves, by (2), the validity of Lemma F in the case p=3, m=1, c=1.

Hence, Lemma F is proved by the assumptions that m > 0 and that it is true for m-1 instead of m; to complete the induction, we must verify it for the case m=0:

$$D_{kp^n}h(e^r)\cdot g^e(e^r) \equiv 0 \pmod{p^{n+1}}.$$

This follows, however, immediately from Lemma D, by setting in (4) instead of $h(e^r)$ the polynom $h(e^r) \{g(e^r)\}^{e-1}$.

Lemma G. If n is a non-negative rational integer, k a positive integer, $(p-1) \nmid k$, φ is an integer, prime to p, in $\Omega(\zeta)$, and φ_1 is another form of φ , then

$$D_{kp^n}\log \varphi(e^v) \equiv D_{kp^n}\log \varphi_1(e^v) \pmod{p^{n+1}}.$$

Proof. If φ is prime to p, also $\varphi(1)$ is prime to p; hence Lemma B implies that $D_{kp^n} \log \varphi(e^r)$ is a rational number the denominator of which is prime to p. Consequently, it is congruent modulo p^{n+1} with a rational integer.

First we assume k < p-1. The two forms of φ satisfy a relation

$$\varphi_1(\zeta) = \varphi(\zeta) + \psi(\zeta) \cdot g(\zeta)$$

where $\psi(\zeta)$ is an integer in $\Omega(\zeta)$ and

$$g(\zeta) = 1 + \zeta + \dots + \zeta^{p-1}.$$

From this follows

(14)
$$\varphi_1(e^r) = \varphi(e^r) + \psi(e^r) \cdot g(e^r)$$

and

$$(15) \varphi_1(1) \equiv \varphi(1) (mod p).$$

212 P. Dénes

According to Lemma C, we have, putting $q(1) = \varphi_0$,

$$D_{kp^n}\log\varphi(e^v) \equiv \sum_{i=1}^n (-1)^{i-1} \cdot \frac{1}{i} \cdot D_{kp^n} \left[\frac{\varphi(e^v) - \varphi_0}{\varphi_0} \right]^i \pmod{p^{n+1}}$$

and, by (14), (15),

$$D_{kp^n}\log \varphi_1(e^e) \equiv \sum_{i=1}^{w} (-1)^{i-1} \cdot \frac{1}{i} \cdot D_{kp^n} \left[\frac{\varphi(e^e) - \varphi_0 + \psi(e^e)g(e^e)}{\varphi_0} \right]^i \pmod{p^{n+1}}$$

where w is a suitable natural number (in accordance with Lemma C).

Denoting by $\chi_{ji}(e^r)$ the following polynom of e^r

$$\chi_{ji}(e^v) = [\varphi(e^v) - \varphi_0]^{i-j} [\psi(e^v)]^j \qquad (j = 1, 2, ..., i),$$

we get

(16)
$$D_{kp^n} \log \varphi_1(e^v) - D_{kp^n} \log \varphi(e^v) \equiv$$

$$\equiv \sum_{i=1}^w \sum_{j=1}^i (-1)^{i-1} \cdot \frac{1}{i} {i \choose j} D_{kp^n} \chi_{ji}(e^v) \cdot g^j(e^v) \pmod{p^{n+1}}.$$

The terms of the sum in (16) have, by

$$\frac{1}{i} \binom{i}{j} = \frac{1}{j} \binom{i-1}{j-1},$$

the following form

(17)
$$(-1)^{i-1} \cdot \frac{1}{j} \binom{i-1}{j-1} D_{kp^n} \chi_{ji}(e^v) \cdot g^j(e^v).$$

Supposing that j is divisible exactly by the a^{th} power of p, (17) is divisible owing to Lemma F by p^b with

$$b = -a + (n+a+1) = n+1.$$

Hence, all terms on the right-hand side of (16) are divisible by p^{n+1} . Thus we have the proof of Lemma G for k < p-1.

Turning to the general case, consider a polynom

$$\xi(e^v) = x_0 + x_1 e^v + \cdots + x_u e^{uv}$$

of e^v where x_0, \ldots, x_n are rational integers. If j is a non-negative integer, the congruence

(18)
$$D_{kp^n}\xi(e^e) \equiv D_{[k+j(p-1)]p^n}\xi(e^e) \qquad (\text{mod } p^{n+1})$$

follows easily from the evident relation

$$x_i^{kp^n} \equiv x_i^{[k+j(p-1)]p^n} \pmod{p^{n+1}}.$$

From (18) we infer that (17) is divisible by p^{n+1} also for k > p-1, $(p-1) \nmid k$. This completes the proof of Lemma G.

§ 3. Proof of the theorem.

Making use of Lemma G we can prove the validity of the conjecture of Kummer.

The integer φ of the field $\Omega(\zeta)$ has the form

$$\varphi = d_0 + d_1 \zeta + \cdots + d_t \zeta^t$$

where t, d_0, \ldots, d_t are rational integers. If $t \le p-2$, φ is given in its normal form and in this case we apply a star to distinguish it from any other form:

(19)
$$\varphi^* = a_0 + a_1 \zeta + \dots + a_{p-2} \zeta^{p-2}.$$

Here a_0, \ldots, a_{p-2} denote rational integers.

Another integer φ_1 of $\Omega(\zeta)$ has also a normal form:

(20)
$$\varphi_1^* = b_0 + b_1 \zeta + \dots + b_{p-2} \zeta^{p-2}$$

with rational integers b_0, \ldots, b_{p-2} . If the congruence (1) is true we have

$$\varphi_1^* - \varphi^* \equiv (b_0 - a_0) + (b_1 - a_1)\zeta + \dots + (b_{p-2} - a_{p-2})\zeta^{p-2} \equiv 0 \pmod{p^{n+1}}$$

and, by setting $\lambda = 1 - \zeta$, we can write

(21)
$$q_1^* - q^* \equiv c_0 + c_1 \lambda + c_2 \lambda^2 + \dots + c_{p-2} \lambda^{p-2} \equiv 0 \pmod{p^{n+1}}$$

where c_0, \ldots, c_{p-2} are rational integers. We show that in (21) c_0, \ldots, c_{p-2} are all divisible by p^{n+1} . In fact, applying (21) as a congruence modulo the principal ideal (λ), we obtain that c_0 is divisible by (λ) and, as c_0 is a rational integer, it is divisible by p. Similarly modulo (λ)² we find that c_1 is divisible by p, and so on, up to c_{p-2} . Now, dividing the integers c_0, \ldots, c_{p-2} by p and regarding (21) as a congruence modulo p^n , we can repeat the applied method and find that the c's are divisible by p². This process can be repeated (n+1)-times, and finally we obtain

$$c_0 \equiv \cdots \equiv c_{p-2} \equiv 0 \pmod{p^{n+1}}.$$

Thus we get by

$$a_k - b_k = (-1)^k \sum_{i=k}^{p-2} {i \choose k} \cdot c_i$$
 $(k = 0, 1, ..., p-2),$ $a_k \equiv b_k \pmod{p^{n+1}}$ $(k = 0, 1, ..., p-2).$

Hence we have

(22)
$$\varphi_1^*(e^r) = \varphi^*(e^r) + p_{n+1} \cdot h(e^r),$$

where $h(e^r)$ is a polynom of e^r of a degree $\leq p-2$ with rational integer coefficients.

Taking the first derivative of $[\log \varphi_1^*(e^r) - \log \varphi^*(e^r)]$ with rescept to v, we get by (22)

$$\frac{d \log \varphi_1^*(e^v)}{dv} - \frac{d \log \varphi^*(e^v)}{dv} = \frac{\frac{d \varphi_1^*}{dv}}{q_1^*} - \frac{\frac{d \varphi^*}{dv}}{\varphi^*} = p^{n+1} \frac{\varphi^*(e^v) \frac{d h(e^v)}{dv} - h(e^v) \frac{d \varphi^*(e^v)}{dv}}{\{\varphi^*(e^v)\}^2 + p^{n+1} \varphi^*(e^v) h(e^v)}$$

and, continuing the differentiation, the mth derivative is

(23)
$$\frac{d^{m} \log \varphi_{1}^{*}(e^{v})}{dv^{m}} - \frac{d^{m} \log \varphi^{*}(e^{v})}{dv^{m}} = p^{n+1} \frac{H(e^{v})}{[\{\varphi^{*}(e^{v})\}^{2} + p^{n+1}\varphi^{*}(e^{v})h(e^{v})]^{m}}$$

where $H(e^v)$ is a polynom of e^v with rational integer coefficients. Setting v = 0 in (23), the denominator on the right-hand side is prime to p, as q is prime to p. Hence

(24)
$$D_m \log \varphi_1^*(e^r) \equiv D_m \log \varphi^*(e^r) \qquad (\text{mod } p^{n+1})$$

for any rational integer m > 0. (24) yields, by Lemma G, the proof of the theorem.

Bibliography.

- [1] E. Kummer: Einige Sätze über die aus den Wurzeln der Gleichung $\alpha\lambda=1$ gebildeten complexen Zahlen für den Fall, daß die Klassenzahl durch λ teilbar ist, nebst Anwendung derselben auf einen weiteren Beweis des letzten Fermat'schen Lehrsatzes. Abhandlungen d. k. Akad. d. Wiss. Berlin (1857), pp. 41—74. (See p. 54.)
- [2] H. S. VANDIVER: On Kummer's memoir of 1857 concerning Fermat's last theorem. Proceedings Nat. Acad. Sci., U. S. A. 6 (1920), pp. 266—269. (See p. 269.)
- [3] H. S. VANDIVER: On Kummer's memoir of 1857 concerning Fermat's last theorem. Bull. Amer. Math. Soc., 28 (1922), pp. 400—407.
- [4] H. S. VANDIVER: On power characters of singular integers in a properly irregular cyclotomic field. Trans. Amer. Math. Soc., 32 (1930), pp. 391—408.
- [5] H. S. Vandiver: On the composition of the group of ideal classes in a properly irregular cyclotomic field. Monatshefte f. Math. u. Physik, 48 (1939), pp. 369—380. (See cit. 12.)

(Received March 1, 1952.)