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Groups as groupoids with one law.

By GrRAHAM HiGMAN and B. H. NEUMANN in Manchester.

§ 1.

Many authors have studied axiom systems for groups; their interest has
been primarily in axiomatics. Though a new set of axioms for groups is
given in this note, it arises in answer to an algebraic question.

[t is known') that groups can be defined in terms of a single binary
operation, viz. right division. Multiplication and inversion can easily be defined
in terms of right division. An algebraic system which is closed under a
binary operation is called a groupoid. Groups then are groupoids with res-
pect to right division *); they can be singled out from the groupoids in general
by means of certain laws (or “rules”, “identical relations”), that is equations
between certain expressions in variables combined by the groupoid operation,
these equations being valid for all values of the variables. We say (following
P. HaLL) that groups form a variety of groupoids. Within this variety we
can single out subvarieties by postulating further laws, e. g. the variety of
abelian groups by the law expressing (in our case in terms of right division)
the commutativity of multiplication, or the variety of groups of exponent n by
the law expressing that all n™ powers equal the unit element.

The question we here propose is: How few laws suffice to determine
the variety of groups (as a subvariety of that of groupoids), or any subvariety
of the variety of groups? The answer is complete for groups and for some
subvarieties:

Every variety of groups which can be defined by a finite system of laws
qua subvariety of the variety of groups can be defined by a single law qua
subvariety of the variety of groupoids. In particular the variety of all groups
can be obtained from that of groupoids by a single law.

We draw attention in passing to the unsolved problem whether there is
any variety of groups which can not be defined by a finite set of laws?®).

) Warp [5], Lorenzen [3].
?) Also, of course, with respect to multiplication, or left division, or commutation, etc.
%) Cf. Hioman [2] for a partial solution.
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It is an immediate consequence of our proposition that every variety
of groups to which it applies can be axiomatised by three postulates?): Two
to ensure the existence and unicity of the result of the groupoid operation,
and a further one to ensure the validity of the single law required. The last
one can be so formulated as to make it formally independent of the existence

and unicity postulates.
§ 2.

We denote by o the binary operation which we wish to turn into right
division in a group. It will be written as a right operator; if the result of ¢
operating upon the (ordered) pair a, b is ¢, we write

abo—c.

This notation (due, we believe, to LUKASIEWICZ) avoids brackets. Thus
the two possible “products” of a, b, ¢, are aboco and abcoo. The operation
gives rise to two kinds of mapping of the groupoid into itself: the right
multiplications R., defined for every element a of the groupoid by

xR, — xao,
x ranging over the groupoid; and the left multiplications L,, defined corres-
pondingly by

Xly=—axop.
We denote mappings of the groupoid into itself by capitals and write them
as right operators. The identical permutation of the groupoid is I. The follow-
ing well-known facts will be used without explicit reference.

The mappings of the groupoid (or in fact any set) into itself form a
semigroup with unit element |. The mappings which possess left inverses are
the mappings onto the groupoid; the mappings with right inverses are the
one-to-one mappings. The mappings with both left and right inverses form
the group of permutations of the groupoid. If RS — P, where P is a perm-
utation, then the mapping R has a right inverse, i. e. it is one-to-one, and
the mapping S has a left inverse, i.e. it is onto the groupoid. _

If all left and right multiplications are permutations, then the groupoid
1S a quasigroup.

It is not difficult to show, using e. g. the axiom system of LORENZEN [3],
that the following two laws make the groupoid into a group, with right divi-
sion as the operation o:

(2.1) X20 Y200 — X)0.

(2 2) XXo yyf_l yg,g =Y.

For LORENZEN’s postulate A is equivalent to saying that the system is a group-
oid, (2.1) is (a slightly strengthened form of) his B, and (2.2) implies his I

4) In the case of groups and of abelian groups this fact is not new. Cf. e. g Garver
[1], Lorexzen [4].
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Abelian groups are obtained if we subject ¢ to the further law *):
(2.3) xxyee=yJ.

Any other variety of groups which can be defined by a finite set of
laws can be thought of as defined by just one further law (in addition to the
group laws (2.1) aud (2.2)). For one only has to express all the laws in
terms of different variables, let us say

u'.-(x,—;, XiBs 0003 x,—,,(.-,) r',-(x.-l, X§By s aj Xi ..{.'].) (f = Yyl i)
and then to combine them into the single law
(24) iy, U0ue...0 =00, ..t0...0.

If the unit element®) e which is the (demonstrably constant) value of xxo,
is substituted for all the variables except those occurring in the /™ law
u; — r;, then (2.4) leads to u; = v; or to eu; 0 — ev;o, from which the i law
again follows. It entails no loss of generality if we assume the laws so for-
mulated that every +; equals the unit element, so that the right-hand side of
(2.4) also equals the unit element.

§ 3.

We may then assume that the variety of groups we want to single out
is defined by a law

(3.1) W=W(X), X2, c00y Xp) =8

where w is some word in variables. If we want to obtain the variety of all
groups we shall simply think of w as the empty word.

3. 2. Theorem. The variety of groups with the law (3.1) is the variety
of groupoids (with respect to right division ¢) defined by the single law

(3.221) XXXOW0 Y020 XXQ0X02000 — ).
The variety of all groups in particular is defined by the law
(3.22) XXX0 Y020 XX0XQZ2000 ).
We can express the law (3.21) in terms of left and right multiplications:
yL.a- r()n-pRrR.u'.rp.rp:pL_r = y
or, noting that y ranges over the whole groupoid,
(3- 3) L.l'.r:’.lrf'gR:R.r.f'Q.f'p:flL.t I'
From this we see that L. has a left inverse: thus all left multiplications are
@) (2.72) is easily seen to follow from (2.1) and (2.3) and can then be omitted; cf,
Lorexzen [3].
%) The unit element (sc. of group multiplication, which does not enter this account

explicitly) is a right neutral of ¢ butnot a left neutral (unless we are dealing with a group
of exponent 2).
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onto the groupoid. L..,., has, moreover, a right inverse, hence is a permu-
tation. If we now write

(3.31) 4 SR M ey S
we see that R. has a right inverse: thus all right multiplications are one-to-
one. If we choose in particular x — x’x’owo then L, is also a permutation,
and from
(3. 32) R R swsm Lesevsbe
we see that R, .,.,., has — for this special choice of x — also a left inverse:
thus it is a permutation. Then also

RBoomdusrinds Rivsavin
is a permutation. But R. does not depend on the special choice of x, and
we have shown that all right multiplications are permutations. But then we
obtain from (3. 31) for arbitrary x that also

Lo=RiieniraRe Longwe
is a permutation. This shows that all left multiplications are permutations,
and the groupoid is a quasigroup.

Now (3.32) is seen to remain valid for arbitrary choice of x, and shows
that R.R..,.,: does not depend on z. Hence we have identically

(3.4) Y20XX0X0200 — yZ 0xx0x02 0.

Here we choose in particular y - xxoxo, and z and 2° such that
xxoxozo—=u and xxexez'o - r take arbitrarily prescribed values v and
v: that is, we put z:uL,,p'_,-{,,z’. -¢L,.9.o. Then (3.4) becomes

(3.5) uuo = rro.

As u and v are arbitrary, this shows that wwo is a constant element. We
denote this element by e and note that for all x
(3.51) XXp==eep=2¢.
Now (3. 3) simplifies to
LewoR:Rizgsel.=1.
We observe that L.., does not depend on the value of w. But then — as we
have a quasigroup — ewpo and also w itself must be constant, i. e. indepen-
dent of the variables x,, ..., x, entering it. If we substitute in particular e for
all these variables, then we obtain w = e (by repeated application of eeo —¢),
hence the constant value of w is e. Hence the law (3. 1) holds in the groupoid.
Now (3.21) (or (3.22)) simplifies to
(3.6) Xeyozoexozooo ).
If we here put x - y and observe that by (3.51)
eygzpéyyzgp e,
we get
yep ==y,
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Thus
K=,

in other words, ¢ is a right neutral element of the operation ¢.
Now we put x =2z =-¢ in (3.6), and obtain

f.’eyQ{J . y’
or
Le=1
Here we replace the first ¢ by xxo, the second by yye, and find that the
law (2.2) holds in the groupoid. ;
From (3.6) we see that

eyozoexgzge (—yL.")
does not depend on 2. Thus
(3.7 eY020exoz00 — €y0exop,
the right-hand side being obtained by putting z—e.

We put, with new variables u,r,y - euo, x-ero or, equivalently,
u = eyo, v—exo. Then (3.7) becomes

Uz rze0 — Uro,

which differs from (2.1) only in the names of the variables. Hence the law
(2. 1) is satisfied in the groupoid.

It only remains to verify that groups with the law (3. 1) satisfy (3. 21),
or that groups in general satisfy (3.22): This verification is straightforward,
and we omit it. This completes the proof of the theorem.

§ 4.

As far as the variety of all groups is concerned, Theorem 3.2 is opti-
mal in more than one respect. Clearly at least one law is required to single
out the groups from the groupoids. If there is only one

BUX Y, o o) =X, P, 55
then one of the words u, » must have length 1, i. e. consist of a single vari-
able, and the other must involve at least three different variables and have
odd length = 9. These statements are not very difficult to prove, though the
last one is laborious to verify. We omit the proofs.

Theorem 3.2 provides a uniform method to find a single law defining
any sub-variety of groups which satisfies the conditions of the theorem; it
may, however, be possible to define such a variety by a law in fewer vari-
ables, or by a shorter law than (3.21). Thus for abelian groups (3. 21) uses
five variables and the left-hand side has length 13. We now show that three
variables in a word of length 5 suffice (both numbers are again the least
possible).
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4. 1. Theorem. The variety of abelian groups is defined (in terms of
division) by the law '
(4.11) XyzZoyxo000 - Z.

It is again a matter of straightforward verification — which we omit —
to show that the law is satisfied in abelian groups. In terms of left and right
multiplications it becomes

2Ljn‘RfJ’.-'{IL.r Z!
that is to say,

(4.2) LyRyzol: =1

Here we see at once that L, has a right inverse and a left inverse, hence the
left multiplications are permutations. Then R,., is also a permutation, and as
yxo ranges over the whole groupoid, all right multiplications are permuta-
tions, and the groupoid is a quasigroup.

Next we notice that

LiRyee =1
does not depend on y; hence
(4. 3) yzoyxop —tzotxoo.
Here we first put z— x and y —uR.', t—+R.", with arbitrary u and ».
Then yzo — yxo—u, tzo —txo =, and (4. 3) gives
uuo = vro.
Denoting this constant element again by e, we have, as before (cf. (3.51))
XXp=eep=—=¢.
Now we put z—x in (4.11), and observe that yxo yxoo — e. We get
xep=%x K=l
If we now put x =y in (4. 11) we also get
4. 4) xxzee =2z, Ly=1.
This shows that the law (2. 3) is satisfied by our groupoid.
With £=x and = z in turn, (4. 3) now gives

(4.5) YZQ PX00 — XZ0 — €2X00.
Thus
(4. 51) XZOYZ00 = €2X00€2)000;

applying (4.5) again, with e, zxoe, zyo taking the place of y, 2z, x, we next
obtain

(4. 52) €ZX00€2y00 = 2Y02X00;
we apply (4.5) once more, with y and z interchanged:
(4. 53) ZY0 2X00 = XY0.
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Finally we combine (4.51-3) to

: X290 Y200 = X)0,
which shows that the law (2. 1) is also satisfied by the groupoid. Hence the
groupoid is an abelian group, and the theorem follows.

§ 5.

We conclude by drawing attention to some unsolved problems. Instead
of defining a certain variety of groupoids, say groups, by as few laws as
possible, one may try to define it by a system of as many irredundant laws
as possible — if there is an upper bound to the number of laws in an irre-
dundant system. We can show that every irredundant system must certainly
be finite if the variety can be defined by some finite system of laws (as is
the case with all the varieties we have here considered); but that the number
of laws in an irredundant system can be unbounded. It is not known whether
it is bounded e. g. for the variety of groups or that of abelian groups.
No variety of groupoids requiring infinitely many laws for its definition ap-
pears to be known; a related problem is to find the cardinal of the set of
varieties of groupoids.?)

Another problem is this: is there any binary operation in a group, other
than right division or left division and their transposes, in terms of which
all group operations can be expressed? It is not difficult to answer the same
question for abelian groups: any binary operation in an abelian group in
terms of which the others can be expressed is either division, abo = ab’,
or its transpose, abo — b.a .
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") These last problems have recently been solved.



