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On systems of polynomials orthogonal in two intervals.

By E. MAKAI in Budapest.

§ L.
Let us take the so-called HEUN's differential equation :
du (A B C \|du : Bt
1) x(x—p)(x—2) F {_-;_}_x—_y_-i_x_—z_ H + (xx+4)u=0

where A, B,C,»4,y,z are constants and look for the conditions securing 2
polynomial solution.

If there exists a solution of the form

U=x"+4ax"'4+gx"*+...+9x+9

and if we substitute this polynomial into equation (1) then there will stand
on the left hand side an expression of degree n--1 the highest term of which
is [a(n—1)+(A+ B+ C)n+=]x*'.

The necessary condition for the existence of a polynomial solution of
the degree n is therefore
(2) %=, =——n(n—1)—(A+B+C)n.
If A,B and C are non-negative numbers further e. g. y<0<2z and condition
(2) is fulfilled then a theorem of HEINE and STIELTJES') asserts that there are
exactly n-1 distinct values of Z such that equation (1) should have a
polynomial solution of degree n. If these polynomials are denoted by

Py ofx), Pu1X), . » - 3 Paan(X)

then according to the same theorem the indices of these polynomfals can be
chosen in such a way that there be exactly k roots of the polynomial P, ;(x)
in the interval (y,0) and exactly n—k roots in the interval (0,2).

Let now be

T=T(x) =x(x—y) (x—2), e =0(x)=x"1(x—y)" '(x—2)"!
(A>0,B>0,C=>0).

1) Szead, G.: Orthogonal Polynomials. (New York, 1939.) p. 147. — Smievtyes: Sur
certains polynomes ... et sur la théorie des fonctions de Lamé. Acta Math. 6 (1885), pp.
321-326.
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The polynomials {P, .(x)}; | have an interesting property: they are ortho-
gonal in either of the two intervals (y,0) and (0,z) with the weight function o(x):

6) [P (0P, c(x)edx— [P, .(x) P, i(x)edx =0 (i k).

For proving this let us multiply equation (1) with o(x). Then it is to be seen
that P,..— P, :(x) and P, .= P, .(x) satisfy the equations

(4) (ToP..:) 4+ (#ax+ 2 :)oP. i =0
and
(5) (ToP;.k) + (X + 4w x)0 P =0,

where 4, ;--%,,. From that the relations of orthogonality (3) follow in the
usual way.

§ 2
Let us now consider the following more general question. Given two real
functions ¢,(x) and o,(x) not changing sign in the domains of integration
I, resp. [,: what are the conditions to be imposed on o,(x) and ¢.(x) if we
want that there should exist a set of polynomials
PatX), 58X« w3 FLE)
of degree at most n satisfying the conditions of orthogonality in fwo domains

6  [PEP.@aEdx— [PEPEex)dx =0 (+k)?

It will be proved that the necessary and sufficient condition for the
existence of the set {P.(x)}, | is that the moments

(7 MY — [xo,(x)dx and MP — |x*o,(x)dx (»—0,1,...,2n)
i i

exist the integral being taken in LEBESGUE’s sense. If conditions (7) are
fulfilled then to a given pair o, — 0,(x), 0, = 0,(x) of weight functions there
exists generally one and only one set {P.(x)), | if the elements of the set
are normalized in any suitable way.
Moreover the way of the proof makes it clear that this result cannot
be generalized to more than two intervals resp. weight functions.
The sufficiency of the condition. Let :p;..(x):if: , be an orthonormal set
of polynomials of degree not higher than n which satisfies the conditions
y \1 i=k
PP edx— o -
I,
This set exists provided the moments (7) exist. Consider the quadratic forms

9) Q. (u,u) = Hl‘ p,—(x)u.-.rg. dx
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and

©) Q) | X picou) e.ax
) \E _
which exist as a consequence of the assumption. The first of these is equal

to \ u; while the other contains also terms of mixed type. Now there exists

a real linear orthogonal transformation which reduces the quadratic form (9.)
to its principal axes. Let this transformation be

H

=2 Cixti (i=0,1,...,n)

k=0

and hence

k=0

Q. (u,u) = Q3(r,r) = I [; pi(x) :: Ci, k Uk -]:gudx :

| |.‘_ [_}.‘ i, :Pi(X) ]] 0sdx = D L.
. k=0 \i=0 J k=l
Ia

The same transformation leaves the form Q,(u,u) unaltered:

Q,(u,u) = Q[ (r,r) = ﬂﬁ ..iu""-kpé(x) ]“—J-!’ld" .\_"T
- k=0 =0 J k=0
1y

Now let P.(x) be defined by

Pi(x) = C, 1 Pi(x) (k=0,1,...,n).

The set {Pi(x)}, . consists of pnlynomlals of degree not exceeding n which
satisfy conditions (6) and moreover

(10) '|.Pf(x)9,dx =1, J.P}f(x}ggdx =1, 0.
iy 5

If 4, 4+ 4, (i k) then there exists only one transformation which reduces the
quadratic form (9,) to the principal axes apart from trivial permutations of the
indices. In this case the set {P; (x),,‘ . is defined by the conditions (6) in
an unambiguous way.

The necessity of the condition. From the existence of (6) and (10) follows
the existence of the moments (7). For the orthogonality of the set {P;(x))
involves the linear independence of its elements. Thus x* can be written in
the form '

XM — ‘}_‘ap,kpk(x) (u —— '0', 15635 H).
k=0

If » is a non-negative integer nct exceeding 2 n then x* can be written in the
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form x’x? where p and ¢ are integers not exceeding n. At last

MO = | xrxr0, dx — | (X a4, Po(x)) (> a,1Pi(x)) o, dx
3 L A {
‘where the last integral has evidently a meaning. The existence of the moments
MY can be shown in a similar manner.

1

Let us consider the quantities 4, in the formula (10). Their value is
equal to . _
[ [P.COFe: dx] [ (P (x)Fe, dx

I, I
also in that case, when the set [P;(x); is not normed but satisfies only
conditions (6). If Q- Q(x) is any polynomial of degree not exceeding n then

(11) | PiQo.dx — 4 | P.Qe, dx.
Iy )

Indeed, the polynomial Q(x) can be written in the form Q — 2,10.:0;. whence
(11) follows immediately.

On the other hand, supposing 4;-=4; (11) characterizes the polynomials
P.(x). More exactly if R(x) and Q(x) are polynomials of degrees not ex-
ceeding n, further if we vary Q(x) with R(x) remaining fixed then the value of

(12) | Rx)Q(x)e. dx/ | R(x) Q(x)ey dx

remains constant if and only if R(x)=-const. Pi(x) (k=0,1,...,n). For
let R(x) - >ciPi(x) where e. g. ¢,==0 and ¢,==0. Then the value of the
quotient (12) is 7, in the case Q(x)- P,(x) and 4, in the case Q(x) = P,(x).

Another consequence of (11) is that if Q(x) and P.(x) are orthogonal
in /, with respect to o,(x) and Q(x) is a polynomial of degree = n then
Q(x) and P;(x) are orthogonal in the domain /, too [with respect to 0.(x)].

§ 4.

If the “domains 1, are the intervals a,=x=b. (r=1,2) further for

sake of simplicity

a<b=0=a,<0b,
then the polynomials of the set |P.(x)}, | defined by (6) are exactly of degree
n, their roots being real, simple and contained either in the open interval
<ay, b or in the open interval <a,, b.>.

Supposing the contrary of this statement: then P.(x) vanishes in the
interior of the above mentioned two intervals at » < n different points. Let
these points be X, x.,...,x, and the corresponding multiplicities of the roots

D 15
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m;,m,,...,m, Let us consider in the case »—0 the function S(x)=1
and in the case » >0 the function
S(xX) = (x—x))"...(x—x,)"
where # is 0 or 1 according as m; is even or odd.
The degree of the polynomial S(x) is less than n and as the polynomial
S(x)P:(x) doesn’t change its sign in either of the intervals (a,, b,), (a., b,) the
value of the integrals

|S(x)P,(x)o dx and |S(x)P1(x)o,dx

will be different from 0. On the other hand the polynomial (x—¢)-S(x) of
a degree not exceeding n and P,(x) are orthogonal in the interval (a,,b,)
at a fixed value of c:

by

.|I(x—f) S(x) Pi(x)o, dx =0

whence

':'I
| xS(x) Pi(x)0, dx

.|:‘S(x) Pi(x)o, dx

The right hand side of this equation is the integral mean of x associated
with the weight function S(x)P.(x)e, gs the integrand of the denominator
does not change its sign in the domain of integration. From this

g < o<,

As according to § 3 the polynomials (x—¢) S(x) and P.(x) are ortho-
gonal with respect to o, in the interval (a,, b)) we can show in the same
way that

a;<c<b
which is apparently a contradiction.

§ 5.

At last we will show that in the case of the set |P.(x)} the theorem
of HEINE and STiELTJES is valid in the form proposed in § 1.

If I, and I, are the intervals specified in the first part of § 4 then the
indices of the set {P.(x)}. | can be chosen in such a way that there should
be k roots of P.(x) in I, and (n—k) roots of the same polynomial in I..

For proving this let us define the function w(x) in the following way:

 0,(x) if a,=x=b
w(x)=—" ' 0,(x) if aa=x=0b,
otherwise.
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Let us still consider the functions

s(x)_—-_-H if a=sx=b
10 otherwise
and
W(x, f) = (1 —1) s(x) -+ tw(x).
The moments :
(13) MO = | xW(x,Hdx (r=1,2; »=0,1,...,2n)

"l'

exist provided the set {M{’(1)} exists which is just the necessary condition
for the existence of the system {P:(x)}. If this condition is fulfilled then to
each value of ¢ there exists in the general case a set {P,x,f)}.~" of poly-
nomials which is uniquely defined apart from a constant factor and which
satisfies the conditions

1] by

| Pi(x,t)-P.(x,t) W(x, ) dx = | Pi(x,)-Pi(x, ) W(x,t)dx (i ==k).

oy - (L]
In the case f=1 this set is identical with the set mentioned at the be-
ginning of § 2.

Let now be

Pi(x,t) = ai,o(t) + a1 () x+. ..+ a1 () x4 x".

The coefficients @i :(f) can be determined with the aid of formula (11) if we
substitute there instead of Q(x) the functions 1, x, x*,...,x". With regard to
(13) we derive from (11) the system of n-i-1 linear equations [ay. .(f) = 1]

(14) ; MO (O —aMP () | aii(t)—0 ((=0,1,...,n)

which has a nontrivial solution if its determinant vanishes. It is to be
seen that for each value of k the same determinantal equation of degree
n--1 serves to the determination of 4.. As the roots of the determinantal
equation are continuous functions of the elements of the determinant, further
the elements of the determinant are continuous functions of £ we can assert
that 2, = 4,(f) is a continuous function of the variable {. But then with regard
to the system (14) the quantities @ ,(f) are continuous functions®) of { and

) If the rank of the matrix of the system (14) is less than n which can occur only
at some isolated values of #, we conclude as follows. Let = be such an isolated value
where the system (14) has more than one linearly independent solution. We then define

a..1()= lim a(%).
=1 =1
As it was seen that at every value of £ ax,:(f) is a continuous function of ¢, therefore in
the case 0 <<z <1 and r < f < 1 4 & where ¢ is sufficiently small we can define ax,1(f) so as

lim a1 () = ax, (7).
Pemt40
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at last the quantities

X (Ul <555 X all)
which mean the roots of P.(x,{) are continuous functions of £. In other words :
at each value of ¢ the indices of the set {x; .(f)} can be chosen in such a
way that x, ,(f) remains a continuous function of .

One can show easily that x; .(f) is a bounded function of £. For ife.g.
a, < x;,»(0) <0 then as a consequence of § 4 at each value of f one has
a; < xx,»(f) <O0.

If £=0, the set {P.(x,f)} is a special case of the STIELTJES set of
polynomials mentioned in § 1. (A=B- C=1, a,=—y, b,— 2.) The indices
of the set {P.(x,0)} therefore can be chosen in such a way that P;(x,0) have
exactly £ roots in <a,,0> and n—k roots in <0,b,>. But this means by
virtue of the aforesaid that if say x; ,(0) is within the bounds a, and O then
for each value of f less than 1: a, < x;,,(f) <0 and consequently x; ,(1) is
enclosed by the narrower bounds @, and b,. Thus the distribution of the
zeros does not change as f increases from O to 1: P.(x,1) has exactly &
roots in the interval <a,, b, > and obviously n—k roots in the interval < a,, b, .

(Received May 26, 1952.)



