Homologies in a normal space and closed subspace.

By C. E. CLARK (Emory University).

§ 1. Introduction.

Let A be a closed subspace of a normal space R. There are natural homomorphisms of the homology groups of A into those of R. Let $\mathfrak L$ denote the kernel of one of these homomorphisms. This article defines and studies groups related to $\mathfrak L$. These groups have been studied in $[2]^1$) when A is a subcomplex of a complex R. The results of [2] have found applications in [3] and [4]. In the present article the results of [2] are extended. Then it is possible to generalize these extended results in the direction of the CECH homology groups and ALEXANDROFF's inner Betti groups. 2)

§ 2. Simultaneous invariants of a complex and subcomplex.

Let K be a space with subspaces L and C. The subspace C will be associated with the special elements of ALEXANDROFF's theory. When the CECH theory is considered, C will be empty. By a simplicial division of K we mean, as in [5], the space K together with a homeomorphism between K and the geometric realization of some finite simplicial complex in a Euclidean space. A simplicial division K^{α} of K is said to be permissible if the following three conditions hold.

- (1) The sets L and C carry subcomplexes L^{α} and C^{α} respectively of K^{α} .
- (2) A simplex of K^{α} is in L^{α} if all its vertices are in L^{α} .
- (3) If a simplex of K^{α} has one face in L^{α} and the opposite face in C^{α} but not in L^{α} , the simplex is in C^{α} .

Let K_1^{α} , L_1^{α} , and C_1^{α} be the first barycentric subdivisions of K^{α} , L^{α} , and C^{α} respectively. Let N_1^{α} be the complex consisting of the simplexes of K_1^{α} that have at least one vertex in L_1^{α} together with the faces of such simplexes.

¹⁾ The numbers in brackets refer to the references listed at the end of this article.

²⁾ ALEXANDROFF'S inner Betti groups are defined in [1].

 $^{^{3}}$) It is easily seen that if a simplicial division D satisfies (1), the first barycentric subdivision of D is permissible. This fact is not used in this article.

238 C. E. Clark

Let R_1^{α} be the complex consisting of the simplexes of K_1^{α} that have no vertex in L_1^{α} . Let R_1^{α} denote the intersection of R_1^{α} and R_1^{α} .

Throughout this article it is understood that all chains have as coefficient group a fixed discrete Abelian group. Also the dimension of all cycles and homology classes is fixed at an arbitrary non-negative integer.

Let \mathcal{P}^a be the subgroup of the homology group of $B_1^a \mod B_1^a \cap C_1^a$ made up of the homology classes whose cycles bound in $R_1^a \mod R_1^a \cap C_1^a$. Let \mathcal{P}^a be the subgroup of the homology group of $L_1^a \mod L_1^a \cap C_1^a$ made up of the homology classes whose cycles bound in $K_1^a \mod K_1^a \cap C_1^a$. Let \mathcal{P}^a be the subgroup of the homology group of $B_1^a \mod B_1^a \cap C_1^a$ made up of the homology classes whose cycles bound both in $N_1^a \mod N_1^a \cap C_1^a$ and in $R_1^a \mod R_1^a \cap C_1^a$.

Theorem 1. The groups \mathfrak{B}^{α} , \mathcal{L}^{α} , and \mathfrak{S}^{α} are invariant under change of permissible division of K.

This theorem is proved in [2] for the case that C is empty. Because of condition (3) the proof in [2] generalizes to cover the case that C is not empty. To achieve the generalization one needs only to observe that in all deformations involved in the proof, a point of C never leaves C. Theorem 1 will not be used, and its proof is not given here.

Let N^{α} , R^{α} , and B^{α} be defined in K^{α} in the same way that N^{α} , R^{α} , and B^{α} are defined in the barycentric subdivision of K^{α} . Because of (2) any simplex in N^{α} but not in L^{α} is the join of a simplex in L^{α} and a simplex in B^{α} . Hence this simplex is made up of segments with end points in L^{α} and B^{α} . These segments are called the rays of the simplex. The rays of all such simplexes are called the rays of N^{α} . Each ray intersects B^{α}_1 in exactly one point, and B^{α}_1 can be homotopically deformed along the rays in N^{α}_1 into L^{α}_1 . Condition (3) implies that a ray intersects $C^{\alpha} - L^{\alpha}$ only if the ray lies completely within C^{α} . Hence during the homotopic deformation just described any point of C^{α} remains within C^{α} .

Theorem 2. We have the isomorphism

$$\mathfrak{B}^{\alpha}/\mathfrak{G}^{\alpha} \cong \mathcal{L}^{\alpha}$$
.

Proof. Let $b \in b' \in \mathcal{P}^{\alpha}$. Regarding b as a continuous cycle we deform b along the rays into the continuous cycle $\varphi^{\alpha}b$ in L_{1}^{α} . Since during the deformation a point of C^{α} does not leave C^{α} , we know that $\varphi^{\alpha}b$ is a cycle of $L_{1}^{\alpha} \mod L^{\alpha} \cap C_{1}^{\alpha}$ and that $b \sim \varphi^{\alpha}b$ in $N_{1}^{\alpha} \mod N_{1}^{\alpha} \cap C_{1}^{\alpha}$. It is seen that $\varphi^{\alpha}b$ bounds in $K^{\alpha} \mod C^{\alpha}$. Furthermore $b \sim 0$ in $B_{1}^{\alpha} \mod B_{1}^{\alpha} \cap C_{1}^{\alpha}$ implies that $\varphi^{\alpha}b \sim 0$ in $N_{1}^{\alpha} \mod N_{1}^{\alpha} \cap C_{1}^{\alpha}$. This implies that $\varphi^{\alpha}b \sim 0$ in $L_{1}^{\alpha} \mod L_{1}^{\alpha} \cap C_{1}^{\alpha}$ because of the properties of the rays. Thus φ^{α} determines a homomorphism Φ^{α} of \mathcal{P}^{α} into \mathcal{P}^{α} .

⁴⁾ The statements made without proof in the present paragraph are proved in [2].

We show next that Φ^{α} maps \mathcal{B}^{α} upon \mathcal{L}^{α} . Consider $l \in l' \in \mathcal{L}^{\alpha}$ with l simplicial. Let F denote the boundary operator. There is a simplicial chain f of K_1^{α} such that Ff = l + c, c a chain of C_1^{α} . The chain f is expressible as a sum $f_1 + f_2$ with f_1 a chain of N_1^{α} and f_2 a chain of R_1^{α} . Consider Ff_2 . Let $Ff_2|B_1^{\alpha}$ be the chain of B_1^{α} that has the same value as Ff_2 at each simplex of B_1^{α} . Since Ff_2 is a chain of $B_1^{\alpha} \cup C_1^{\alpha}$, we see that $Ff_2|B_1^{\alpha}$ is a cycle mod $B_1^{\alpha} \cap C_1^{\alpha}$ which bounds in $R_1^{\alpha} \mod R_1^{\alpha} \cap C_1^{\alpha}$. This means that $Ff_2|B_1^{\alpha}$ is in some element of \mathcal{D}_1^{α} .

Since f_1 is in N_1^α , we see that $Ff_1 = F(f - f_2) = l + c - Ff_2$ is in N_1^α . But this means that $l - (Ff_2|B_1^\alpha) \sim 0$ in $N_1^\alpha \mod N_1^\alpha \cap C_1^\alpha$. Hence $l \sim \varphi^\alpha(Ff_2|B_1^\alpha)$ in $N_1^\alpha \mod N_1^\alpha \cap C_1^\alpha$. But the properties of the rays imply that this last homology holds in $L_1^\alpha \mod L_1^\alpha \cap C_1^\alpha$. This proves that Φ^α maps \mathcal{D}^α upon \mathcal{D}^α .

Using again the properties of the rays we easily see that $\varphi^{\alpha}b \sim 0$ in $L_1^{\alpha} \mod L_1^{\alpha} \cap C_1^{\alpha}$ if and only if $b \sim 0$ in $N_1^{\alpha} \mod N_1^{\alpha} \cap C_1^{\alpha}$. This fact proves that the kernel of Φ^{α} is \mathcal{G}^{α} . Theorem 2 is proved.

§ 3. Permissible mappings.

Let K^{β} , L^{β} , and C^{β} satisfy the conditions (1), (2), and (3) imposed on the complexes with index α . Let N^{β} , B^{β} , and R^{β} be defined for K^{β} as N^{α} , etc., are defined for K^{α} . A simplicial mapping S of K^{β} into K^{α} is said to be permissible if the following inclusions hold.

(4) $SC^{\beta} \subset C^{\alpha}$, $SL^{\beta} \subset L^{\alpha}$, $SN^{\beta} \subset N^{\alpha}$, $SB^{\beta} \subset B^{\alpha}$, $SR^{\beta} \subset R^{\alpha}$. The simplicial mapping S determines a natural mapping S' of a geometric realization of K^{β} into a geometric realization of K^{α} . From $SB^{\beta} \subset B^{\alpha}$ and $SL^{\beta} \subset L^{\alpha}$ it follows that any ray of N^{β} is mapped by S' upon a ray of N^{α} .

From S we obtain a simplicial mapping S_1 of K_1^β into K_1^α by mapping the barycenter of a simplex of K^β upon the barycenter of the transform of this simplex by S. It is seen that $S_1C_1^\beta \subset C_1^\alpha$, $S_1L_1^\beta \subset L_1^\alpha$, $S_1N_1^\beta \subset N_1^\alpha$, $S_1B_1^\beta \subset B_1^\alpha$, and $S_1R_1^\beta \subset R_1^\alpha$. These inclusions imply the existence of homomorphisms

$$\beta_{\alpha}^{\beta} \Im^{\beta} \subset \Im^{\alpha},$$

$$\lambda_{\alpha}^{\beta} \mathcal{L}^{\beta} \subset \mathcal{L}^{\alpha},$$

$$\gamma_{\alpha}^{\beta} \mathcal{G}^{\beta} \subset \mathcal{G}^{\alpha}.$$

We shall show next that

(8)
$$\lambda_{\alpha}^{\beta} \mathcal{D}^{\beta} \mathcal{P}^{\beta} = \mathcal{D}^{\alpha} \beta_{\alpha}^{\beta} \mathcal{P}^{\beta}.$$

To do so we shall show that if $b \in b' \in \mathcal{P}^{\beta}$, then if b is a continuous cycle, $S_1' \varphi^{\beta} b$ and $\varphi^{\alpha} S_1' b$ are homotopic in $L^{\alpha} \mod L^{\alpha} \cap C^{\alpha}$, where S_1' is the natural mapping of a geometric realization of K_1^{β} into a geometric realization of K_1^{α} which is determined by S_1 . If the point p is in B_1^{β} , then p and $\varphi^{\beta} p$ are in the closure of some simplex σ of N^{β} . Hence from the definition of S_1 it is seen that $S_1' p$ and $S_1' \varphi^{\beta} p$ are in the closure of S_{σ} . But since S_{σ} contains

240 C. E. Clark

the point $S_1'p$ of B_1'' , the closure of $S\sigma$ contains $\varphi^\alpha S_1'p$. Hence both $\varphi^\alpha S_1'p$ and $S_1'\varphi^\beta p$ are in the closure of $S\sigma$, a simplex of N^α . But since both the points are in L^α , they are in the closure of some simplex of L^α . Also since S_1' maps a point of C^β into one of C^α , and since condition (3) implies that φ^β and φ^α map points of C^β and C^α respectively into points of C^β and C^α , if p is in C^β , then both $\varphi^\alpha S_1'p$ and $S_1'\varphi^\beta p$ are in C^α . It follows that $S_1'\varphi^\beta b$ and $\varphi^\alpha S_1'b$ are homotopic in L^α mod $L^\alpha \cap C^\alpha$. Formula (8) is proved.

Summarizing the discussion of section 3 we obtain the following

Theorem 3. A permissible mapping of K^{β} into K^{α} determines homomorphisms (5), (6), and (7) which satisfy (8).

§ 4. Invariants related to Alexandroff's inner Betti groups.

Let A be a closed subset of a normal space R. We shall study R and A using two homology theories, the classical Cech theory and the theory of Alexandroff's inner Betti groups.²) For the Cech theory no further restriction is placed on R and A. But for Alexandroff's theory R is locally compact (= bicompact). In the present section the locally compact case is considered.

By a permissible covering of R we mean a covering by the open sets $\{e_i\}$ and $\{g_j\}$ which satisfy the following conditions (9) through (15).

- (9) The e_i cover A.
- (10) The g_i cover R-A.
- (11) $g_i \cap A = \emptyset$. 5)
- (12) If the elements of any subset of $\{e_i\}$ have a common point in R, they have a common point in A.
 - (13) If $\bar{e}_i \cap A$ is compact, then \bar{e}_i is compact.
 - (14) If $e_i \cap g_j \neq \emptyset$ and \bar{g}_j is not compact, then $\bar{e}_i \cap A$ is not compact.
 - (15) If $e_i \cap g_i \neq \emptyset$, then $g_i \cap A \neq \emptyset$.

Theorem 4. Any covering of R has a refinement that is permissible. Here as throughout the article all coverings are by open sets.

Proof. Consider any covering of R made up of sets $\{e_i\}$ meeting A and $\{g_j\}$ not meeting A. The covering made up of $\{e_i\}$ and $\{g_j, e_i - A\}$ is a refinement which satisfies (9) through (11). This refinement can be further refined by the methods of [1] to obtain a refinement of the original covering which satisfies (9) through (13).

Assume that the covering consisting of $\{e_i\}$ and $\{g_j\}$ satisfies (9) through (13). Suppose that as an exception to (14) we have $e_i \cap g_j \neq \emptyset$, \bar{g}_j is not compact, and $\bar{e}_i \cap A$ is compact. Then by (13) we see that \bar{e}_i is compact. Hence $e_i \cap g_j$ is compact. Since R is locally compact and normal, there is an

^{5) (} denotes the empty set.

open set g such that $g \supset e_i \cap g_j$, g is compact, and $g \cap A = \emptyset$. In the covering considered g_j is deleted and replaced by the two sets $g_j - \bar{e}_i$ and $g_j \cap g$. This replacement gives a refinement of the covering with one less exception to (14). Also this replacement does not introduce any exception to (9) through (13). Thus we get a refinement with no exception to (9) through (14).

Assume that a covering satisfies (9) through (14). Consider an e_i . If $e_i \cap A$ contains no limit point of $e_i - A$, then $e_i \cap A$ and $e_i - A$ are both open; in this case we replace e_i by the two open sets $e_i \cap A$ and $e_i - A$. We get a refinement of the covering such that there is no exception to (15) involving e_i . On the other hand if $e_i \cap A$ contains a limit point of $e_i - A$, we proceed as follows. We consider the sum $\sum_{i=1}^{n} \overline{g_i}$ of those $\overline{g_i}$ for which $\overline{g_i} \cap A = \emptyset$. We replace e_i by the two sets $e_i - \sum_{i=1}^{n} \overline{g_i}$ and $e_i - A$. This gives a refinement of the covering such that there is no exception to (15) involving e_i . Handling all the e_i in the same way we get a refinement of the covering satisfying (9) through (15). Theorem 4 is proved.

A permissible covering consisting of $\{e_i^1\}$ and $\{g_i^1\}$ is said to be a permissible refinement of a permissible covering consisting of $\{e_i^2\}$ and $\{g_j^2\}$ if the first covering is a refinement of the second and each g_j^1 is a subset of some g_i^2 .

Theorem 5. Any two permissible coverings of R have a common permissible refinement.

Proof. Consider the permissible coverings Ω^k , k=1, 2, consisting of $\{e_i^k\}$ and $\{g_i^k\}$. These two coverings have a common refinement. Hence by theorem 4 they have a refinement Ω^3 that is permissible. Let Ω^3 consist of $\{e_i^3\}$ and $\{g_j^3\}$. Form all possible sets g_j^4 each of which is the intersection of three sets, one of which is a g_j^1 , one a g_j^2 , and the third a g_j^3 . The covering consisting of $\{e_i^3\}$ and $\{g_j^4\}$ is a permissible refinement of Ω^1 and Ω^2 .

Let K^{β} be the nerve of the permissible covering Ω^{β} . Let L^{β} be the subcomplex of K^{β} made up of all the simplexes whose vertices correspond to sets e^{β} . As in [1] let a simplex of K^{β} be special if each vertex of the simplex corresponds to a set of Ω^{β} whose closure is not compact. These special simplexes make up the special subcomplex C^{β} .

Theorem 6. The complexes K^{β} , L^{β} , and C^{β} satisfy conditions (2) and (3). Proof. Condition (2) is a consequence of the definition of L^{β} . Also (3) is a consequence of (14).

If Ω^{β} is a permissible refinement of Ω^{α} , there is a projection ω_{α}^{β} of Ω^{β} into Ω^{α} such that each g_{j}^{β} projects into a g_{j}^{α} . Such a projection is permissible.

The permissible projection ω_{α}^{β} determines a simplicial mapping S_{α}^{β} of K^{β} into K^{α} . We shall show next that S_{α}^{β} satisfies condition (4) and hence is permissible. From the definitions of C^{β} and L^{β} it is seen that $S_{\alpha}^{\beta}C^{\beta} \subset C^{\alpha}$

242 C. E. Clark

and $S_{\alpha}^{\beta}L^{\beta} \subset L^{\alpha}$. Condition (15) implies that B^{β} is made up of those simplexes of K^{β} whose vertices correspond to a set J of the g_{j}^{β} with the two properties that $\bar{g}_{j}^{\beta} \cap A = \emptyset$, all g_{j}^{β} in J, and there is a point common to some e_{i}^{β} and all the g_{j}^{β} with j in J. This gives $S_{\alpha}^{\beta}B^{\beta} \subset B^{\alpha}$. Similarly $S_{\alpha}^{\beta}N^{\beta} \subset N^{\alpha}$. Finally we observe that R^{β} is the subcomplex of K^{β} made up of the simplexes whose vertices correspond to elements of $\{g_{j}^{\beta}\}$. But since ω_{α}^{β} is permissible, a g_{j}^{β} projects into a g_{j}^{α} . Hence we have $S_{\alpha}^{\beta}R^{\beta} \subset R^{\alpha}$. The proof that S_{α}^{β} is permissible is complete.

Since S_{α}^{β} is permissible, theorem 3 gives the homomorphisms (5), (6), and (7). Using theorem 5 we see that we have inverse spectra $[\mathcal{B}^{\beta}; \beta_{\alpha}^{\beta}]$, $[\mathcal{L}^{\beta}; \lambda_{\alpha}^{\beta}]$, and $[\mathcal{G}^{\beta}; \gamma_{\alpha}^{\beta}]$; in these spectra only permissible projections are admitted. Let the limit groups of these spectra be \mathfrak{B} , \mathfrak{L} , and \mathfrak{G} respectively. These groups are taken as discrete.

Theorem 7. We have the isomorphism

Proof. Theorem 7 is a consequence of condition (8) of theorem 3.

Theorem 8. The group \mathfrak{L} is a subgroup of the inner Betti group of $A.^2$) This theorem follows from the conditions (12) and (13).

§ 5. Invariants related to the Cech homology groups.

In section 4 the local compactness of R was employed only in handling difficulties arising in the consideration of special elements of a covering. In the CECH homology theory elements of a covering are not singled out as special. Hence some of the considerations of section 4 give the following theorem.

Theorem 9. If as in the CECH homology theory no elements of a covering are considered to be special, the three groups appearing in theorem 7 can be defined and the isomorphism of theorem 7 proved on the assumption that R is normal.

§ 6. The simplicial case.

Let there be a simplicial division of R into a finite complex K such that A carries a subcomplex L and (2) is satisfied. We have for K and L the groups \mathcal{B} , etc., of section 2 and the groups of the CECH type \mathfrak{B} , etc., of section 5.

Theorem 10. We have the isomorphisms $\mathcal{B} \cong \mathcal{B}$, $\mathcal{G} \cong \mathcal{G}$, and $\mathcal{L} \cong \mathcal{E}$.

Proof. Let K_n , n = 0, 1, 2, ..., denote the n^{th} barycentric subdivision of K with the understanding that $K_0 = K$. Let N_n , B_n , and R_n be defined in K_n as N_1 , N_2 , and N_3 are defined in N_4 . Any simplex of N_4 , N_4 , N_5 , N_5 , N_6

intersects B_{i+1} in a subcomplex which is the subdivision of a cell x_1 , the faces of x_1 being the intersections of B_{i+1} and the faces of the given simplex of N_i . The same simplex of N_i determines in the same way a cell x_2 as its intersection with B_{i+2} . All such x_1 and x_2 determine cell complexes X_1 and X_2 respectively of which B_{i+1} and B_{i+2} are subdivisions. Also X_1 and X_2 are isomorphic under the association of x_1 and x_2 . Let \mathcal{B}^n be defined for K_n as \mathcal{B}^a is defined for K^a . It is shown in [2] that the chain mapping $x_2 \rightarrow x_1$ determines a correspondence between cycles that leads to the first two of the isomorphisms

(16)
$$\mathcal{B}^{n+1} \cong \mathcal{B}^{n+2}$$
, $\mathcal{G}^{n+1} \cong \mathcal{G}^{n+2}$, $\mathcal{L}^{n+1} \cong \mathcal{L}^{n+2}$.

The third isomorphism of (16) is well known. These isomorphisms will prove theorem 10 when we have defined a cofinal sequence of permissible coverings such that the corresponding groups and projections are the groups and isomorphisms of (16).

Let Ω^n , n = 0, 1, 2, ..., be the covering of R by the open stars of the vertices of K_n . Then K_n can be considered as the nerve of Ω^n . It is seen that each Ω^n is permissible. We shall describe a permissible projection of Ω^{i+2} into Ω^{i+1} , i = 0, 1, 2, ..., such that the corresponding projection of the nerve K_{i+2} into the nerve K_{i+1} determines a chain mapping of B_{i+2} into B_{i+1} that is homotopic to the chain mapping defined by $x_2 \rightarrow x_1$.

Consider a vertex V of B_{i+2} . Let V' be a vertex of B_{i+1} such that V is in the star of V' (in K_{i+1}). Let σ be a simplex of K_i such that V is a vertex of the second barycentric subdivision of the closure of σ . Then since the star of V' contains V, the vertex V' must be in the first barycentric subdivision of the closure of σ . This means that in any permissible projection of Ω^{i+2} into Ω^{i+1} , the corresponding chain mapping induced in the nerves must be such that a vertex of B_{i+2} that is in the cell x_2 is mapped into a vertex of the corresponding x_1 . Hence this mapping of the nerves as applied to B_{i+2} is a mapping which is homotopic to the mapping determined by $x_2 \rightarrow x_1$. Thus the homomorphisms of the homology groups determined by the permissible projection of Ω^{i+2} into Ω^{i+1} are the isomorphisms (16). Theorem 10 follows.

References.

- P. Alexandroff, General combinatorial topology. Trans. Amer. Math. Soc., 49 (1941), pp. 41—105.
- [2] C. E. Clark, Simultaneous invariants of a complex and subcomplex. *Duke Math. J.*, 5 (1939), pp. 62-71.
- [3] W. W. Flexner, A class of singular 2-manifolds. Bull. Amer. Math. Soc., 44 (1938), p. 626.
- [4] W. W. Flexner, Duality theorems for singular generalized manifolds. Bull. Amer. Math. Soc., 44 (1938), p. 627.
- [5] H. Seifert and W. Threlfall, Lehrbuch der Topologie. (Leipzig, 1934.)

(Received July 14, 1952.)