Homologies in a normal space and closed subspace.

By C. E. CLARK (Emory University).

§ 1. Introduction.

Let A be a closed subspace of a normal space R. There are natural
homomorphisms of the homology groups of A into those of R. Let ¢ denote
the kernel of one of these homomorphisms. This article defines and studies
groups related to ¥. These groups have been studied in [2]') when A is a
subcomplex of a complex R. The results of [2] have found applications in
[3] and [4]. In the present article the results of [2] are extended. Then it is
possible to generalize these extended results in the direction of the CECH
homology groups and ALEXANDROFF’s inner Betti groups.?)

§ 2. Simultaneous invariants of a complex and subcomplex.

Let K be a space with subspaces L and C. The subspace C will be
associated with the special elements of ALEXANDROFF's theory. When the CECH
theory is considered, C will be empty. By a simplicial division of K we
mean, as in [5], the space K together with a homeomorphism between K and
the geometric realization of some finite simplicial complex in a Euclidean
space. A simplicial division K“ of K is said to be permissible if the following
three conditions hold.

(1) The sets L and C carry subcomplexes L“ and C" respectively of K*“.

(2) A simplex of K“ is in L if all its vertices are in L.

(3) If a simplex of K“ has one face in L“ and the opposite face in C*
but not in L% the simplex is in C“.)

Let K7, LY, and CY be the first barycentric subdivisions of K L and
C“ respectively. Let Ni be the complex consisting of the simplexes of K7 that
have at least one vertex in LY together with the faces of such simplexes.

') The numbers in brackets refer to the references listed at the end of this article.

%) ALexanprorr's inner Bermi groups are defined in [1).

) It is easily seen that if a simplicial division D satisfies (1), the first barycentric
subdivision of D is permissible. This fact is not used in this article.
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Let R be the complex consisting of the simplexes of K7 that have no vertex
in LY. Let BY denote the intersection of Ni and RY.

Throughout this article it is understood that all chains have as coeffi-
cient group a fixed discrete Abelian group. Also the dimension of all cycles
and homology classes is fixed at an arbitrary non-negative integer.

Let 1) be the subgroup of the homology group of BY mod ByNC{
made up of the homology classes whose cycles bound in R} mod R{NCY.
Let ©2° be the subgroup of the homology group of LY mod LYNCY made up
of the homology classes whose cycles bound in K7 mod KinCy. Let (“ be
the subgroup of the homology group of BY mod BinCY made up of the
homology classes whose cycles bound both in NY mod NYNCY and in R{
mod Ry NCY.

Theorem 1. The groups ‘1%, %, and ()“ are invariant under change
of permissible division of K.

This theorem is proved in [2] for the case that C is empty. Because
of condition (3) the proof in [2] generalizes to cover the case that C is not
empty. To achieve the generalization one needs only to observe that in all
deformations involved in the proof, a point of C never leaves C. Theorem 1
will not be used, and its proof is not given here.

Let N R“ and B“ be defined in K“ in the same way that N*, Ry, and
By are defined in the barycentric subdivision of K“. Because of (2) any
simplex in N“ but not in L“ is the join of a simplex in L“ and a simplex
in B“.') Hence this simplex is made up of segments with end points in
L" and B"“. These segments are called the rays of the simplex. The rays of
all such simplexes are called the rays of N“. Each ray intersects BY in exactly
one point, and B can be homotopically deformed along the rays in N7 into
Ly. Condition (3) implies that a ray intersects C“—L" only if the ray lies
completely within C“. Hence during the homotopic deformation just described
any point of C“ remains within C“.

Theorem 2. We have the isomorphism

Ij“ (;(( :‘: \‘__J“.

Proof. Let beb’ € 1)°. Regarding b as a continuous cycle we deform b
along the rays into the continuous cycle ¢“b in LY. Since during the defor-
mation a point of C“ does not leave C“, we know that ¢“b is a cycle of
LY mod L“NCY and that b~ ¢“b in NY mod NYNCy. It is seen that ¢*b
bounds in K“ mod C“ Furthermore b~ 0 in BY mod BYNCy implies that
¢“b~0 in Ny mod N{'nCY. This implies that ¢“6~0 in LY mod LYNCY
because of the properties of the rays. Thus ¢“ determines a homomorphism
@“ of 1 into L

1) The statements made without proof in the present paragraph are proved in [2].
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We show next that @“ maps 75 upon “ Consider [€l'€ 2% with [
simplicial. Let F denote the boundary operator. There is a simplicial chain f
of K" such that Ff=1[1-+¢, ¢ a chain of Ci’. The chain f is expressible as a
sum f-+f> with fi a chain of Ni' and f> a chain of R). Consider Ff.. Let
Ff. BY be the chain of B that has the same value as Ff. at each simplex
of BY. Since Ff: is a chain of BYUC/, we see that Ff,|BY is a cycle mod
BYnCy" which boundsin R{* mod R{*NCy'. This means that Ff.|Bf is in some
element of )"

Since f; is in Ny, we see that Ff,— F(f—f.) = [ +c—Ff: is in Ni". But
this means that [—(Ff.|BY)~0 in N;" mod Ni{'nCy. Hence [~ ¢“(Ff2| BY)
in NI mod Ni'nCy. But the properties of the rays imply that this last homology
holds in LY mod LYNCy. This proves that ®“ maps /) upon .

Using again the properties of the rays we easily see that ¢“b~0 in
LY mod LYNnCy if and only if 6~0 in Ny mod Ny'nCy". This fact proves
that the kernel of @ is (/. Theorem 2 is proved.

§ 3. Permissible mappings.

Let K°, L', and C” satisfy the conditions (1), (2), and (3) imposed on
the complexes with index «. Let N’, B, and R’ be defined for K’ as N“,
etc., are defined for K“. A simplicial mapping S of K* into K“ is said to
be permissible if the following inclusions hold.

(4) SC*cC®, SL’c L, SN’cN* SB’cB", SR°cR®. The simpli-
cial mapping S determines a natural mapping S’ of a geometric realization
of K’ into a geometric realization of K“. From SB'cB” and SL cL” it
follows that any ray of N’ is mapped by S’ upon a ray of N“.

From S we obtain a simplicial mapping S, of Ki into Ki' by mapping
the barycenter of a simplex of K’ upon the barycenter of the transform of
this simplex by S. It is seen that $,C/ <= CY, SiLic Ly, SIN{ c N{, S$iBic B,
and S; R’ = RY". These inclusions imply the existence of homomorphisms

(5) 0495 el

(6) Lol e ol 25

(7) re g’

We shall show next that

(8) ha @1 = D31,

To do so we shall show that if b€b € 1)°, then if b is a continuous cycle,
Si¢?b and ¢*S{b are homotopic in L“ mod L“NC" where S is the natural
mapping of a geometric realization of K| into a geometric realization of
K\ which is determined by S,. If the point p is in B/, then p and ¢’p are
in the closure of some simplex o of N”. Hence from the definition of S, it
is seen that S{p and S{¢’p are in the closure of So. But since So contains
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the point Sfp of By, the closure of So contains ¢“Sip. Hence both ¢“Si p
and Si{¢’p are in the closure of So, a simplex of N. But since both the
points are in L“ they are in the closure of some simplex of L“. Also since
Si maps a point of C” into one of C“, and since condition (3) implies that
¢ and ¢* map points of C’ and C*“ respectively into points of C* and C“,
if p is in C”, then both ¢“Sip and S/¢?p are in C“. It follows that Si¢’b
and ¢“S{b are homotopic in L mod L“NC". Formula (8) is proved.
Summarizing the discussion of section 3 we obtain the following

Theorem 3. A permissible mapping of K’ into K“ determines homo-
morphisms (5), (6), and (7) which satisfy (8).

§ 4. Invariants related to Alexandroff’s inner Betti groups.

Let A be a closed subset of a normal space R. We shall study R and
A using two homology theories, the classical CecH theory and the theory
of ALEXANDROFF’s inner BETTI groups.”) For the CEgCH theory no further
restriction is placed on R and A. But for ALEXANDROFF’s theory R is locally
compact (— bicompact). In the present section the locally compact case is
considered.

By a permissible covering of R we mean a covering by the open sets
le.} and |g;} which satisfy the following conditions (9) through (15).

(9) The e; cover A.

(10) The g; cover R—A.

(11) ginA=Q.%)

(12) If the elements of any subset of {e;} have a common point in R,
they have a common point in A.

(13) If e:nA is compact, then ¢; is compact.

(14) If eing; -8 and g; is not compact, then &;:nA is not compact.

(15) If eing; =8, then g;nA-==A.

Theorem 4. Any covering of R has a refinement that is permissible.
Here as throughout the article all coverings are by open sets.

Proof. Consider any covering of R made up of sets {e;} meeting A and
lg;} not meeting A. The covering made up of le;) and {g;, ee—A} is a
refinement which satisfies (9) through (11). This refinement can be further
refined by the methods of [1] to obtain a refinement of the original covering
which satisfies (9) through (13).

Assume that the covering consisting of |e;} and {g;} satisfies (9) through
(13). Suppose that as an exception to (14) we have e;ng;=+-8, g is not
compact, and ¢nA is compact. Then by (13) we see that ¢ is compact.
Hence e;ng; is compact. Since R is locally compact and normal, there is an

9) ) denotes the empty set.
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open set g such that g>e;ng;, g is compact, and gnA =—8. In the covering
considered g; is deleted and replaced by the two sets g,—eé and g;ng.
This replacement gives a refinement of the covering with one less exception
to (14). Also this replacement does not introduce any exception to (9) through
(13). Thus we get a refinement with no exception to (9) through (14).

Assume that a covering satisfies (9) through (14). Consider an e;. If
e;:NA contains no limit point of e,.—A, then e.nA and ¢,— A are both open;
in this case we replace ¢, by the two open sets ¢;,nA and e,—A. We get a
refinement of the covering such that there is no exception to (15) involving e..
On the other hand if e;nA contains a limit point of e,—A, we proceed as
follows. We consider the sum :’g’_,- of those g; for which g;,nA-—8. We
replace e; by the two sets e.—> g, and e,—A. This gives a refinement of
the covering such that there is no exception to (15) involving e;. Handling
all the e; in the same way we get a refinement of the covering satisfying (9)
through (15). Theorem 4 is proved.

A permissible covering consisting of {¢!} and {g!} is said to be a per-
missible refinement of a permissible covering consisting of }¢?} and g it
the first covering is a refinement of the second and each g!is a subset of
some g°. '

Theorem 5. Any two permissible coverings of R have a common per-
missible refinement.

Proof. Consider the permlssmle coverings £2°, k=1, 2, consisting of
t¢f} and {g*}. These two LOVEI’IIlgS have a common refinement. Hence by
theorem 4 they have a refinement £ that is permissible. Let ©2" consist of
te!} and {g’}. Form all pnssuhle sets g; each of which is the intersection of
three sets, one of which IS a g, one a g;, and the third a g, The covermg
consisting of {e/} and {gj} is a permissible refinement of £2' and £°.

Let K* be the nerve of the permissible covering £°. Let L’ be the
subcomplex of K” made up of all the simplexes whose vertices correspond
to sets e/. As in [1] let a simplex of K” be special if each vertex of the
simplex corresponds to a set of £’ whose closure is not compact. These
special simplexes make up the special subcomplex C’.

Theorem 6. The complexes K°, L°, and C’ satisfy conditions (2) and (3).

Proof. Condition (2) is a consequence of the definition of L”. Also (3)
is a LOHSEQUGIICE of (14).

If 2" is a permissible refmement of Q2 there is a projection my of
2" into £2° such that each g; projects into a g*. Such a projection is per-
missible.

The permissible projection o' determines a simplicial mapping St of
K” into K“. We shall show next that S, satisfies condition (4) and hence
is permissible. From the definitions of C* and L’ it is seen that SiC’cC”

D 16
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and SifL"CL". Condition (15) implies that B’ is made up of those simplexes
of K* whose vertices LOI’]’CS]JOI‘ld to a set / of the g’ with the two propertles
“ that g,nA -8, all g‘, in /, and there is a point common to some ¢! and
all the g/ with j in /. This gives SiB’c B®. Similarly SN’ N“. Finally
we observe that R’ is the suhcomplex of K* made up of the simplexes whose
vertices Lorrespond to elements of {g,, But since o, is perrmssmle, a g; pro-
jects into a g'. Hence we have SER’cR“. The proof that S is permissible
is complete.
Since S/ is permissible, theorem 3 gives the homomorphisms (5), (6),
and (7). Using theorem 5 we see that we have inverse spectra [B'; fa],
p?. 28], and [G°; ;f,,]‘ in these spectra only permissible projections are
admltted Let the limit groups of these spectra be B, ¥, and & respectively.
These groups are taken as discrete.

Theorem 7. We have the isomorphism
BG~¢,

Proof. Theorem 7 is a consequence of condition (8) of theorem 3.
Theorem 8. The group ¥ is a subgroup of the inner Betti group of A)
This theorem follows from the conditions (12) and (13).

§ 5. Invariants related to the Cech homology groups.

In section 4 the local compactness of R was employed only in hand-
ling difficulties arising in the consideration of special elements of a covering.
In the CECH homology theory elements of a covering are not singled out as
special. Hence some of the considerations of section 4 give the following
theorem.

Theorem 9. /f as in the CECH homology theory no elements of a covering
are considered to be special, the three groups appearing in theorem T can be
defined and the isomorphism of theorem T proved on the assumption that R
is normal.

§ 6. The simplicial case.

Let there be a simplicial division of R into a finite complex K such
that A carries a subcomplex L and (2) is satisfied. We have for K and L
the groups B, etc., of section 2 and the groups of the CECH type U, etc.,
of section 5.

Theorem 10. We have (. iconuiphisms B>~Y, Q~G, and LP~.

Proof. Let K,, n—0, 1, 2,..., denote the n"™ barycentric subdivision
of K with the understanding that K,— K. Let N,, B,, and R, be defined in
K, as N,, B,, and R, are defined in K,. Any simplex of N;,i=0,1, 2,...,
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intersects B, in a subcomplex which is the subdivision of a cell x,, the
faces of x, being the intersections of B.., and the faces of the given simplex
of N:. The same simplex of N; determines in the same way a cell x, as its
intersection with Bi.2. All such x, and x, determine cell complexes X, and X,
respectively of which B;.; and B, are subdivisions. Also X, and X, are iso-
morphic under the association of x, and x,. Let B" be defined for K, as
B is defined for K*. It is shown in [2] that the chain mapping x,— X,
determines a correspondence between cycles that leads to the first two of the
isomorphisms

(16) 5 SR 7, i L ¢ ki) ¢ sl 3 < )

The third isomorphism of (16) is well known. These isomorphisms will prove
theorem 10 when we have defined a cofinal sequence of permissible coverings
such that the corresponding groups and projections are the groups and iso-
morphisms of (16).

Let 2%, n—0, 1, 2,..., be the covering of R by the open stars of the
vertices of A’,. Then K, can be considered as the nerve of 2". It is seen
that each £" is permissible. We shall describe a permissible projection of
Q" into ', i—0, 1, 2,..., such that the corresponding projection of
the nerve K. into the nerve K;;; determines a chain mapping of B... into
By that is homotopic to the chain mapping defined by x,— x,.

Consider a vertex V of B;.,. Let V' Be a vertex of B;.; such that Vis
in the star of V' (in K;). Let ¢ be a simplex of K, such that V is a vertex
of the second barycentric subdivision of the closure of ¢. Then since the
star of V' contains V, the vertex V' must be in the first barycentric subdivi-
sion of the closure of o. This means that in any permissible projection of
Q"% into Q7" the corresponding chain mapping induced in the nerves must
be such that a vertex of B,» that is in the cell x, is mapped into a vertex
of the corresponding Xx;. Hence this mapping of the nerves as applied to
B..» is a mapping which is homotopic to the mapping determined by x, — Xx;.
Thus the homomorphisms of the homology groups determined by the per-
missible projection of 2% into "' are the isomorphisms (16). Theorem
10 follows.
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