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The distribution of quadratic and higher residues.

By H. DAVENPORT and P. ERDOS in London.

§ 1.

In this paper we discuss some of the many problems that can be
propounded  concerning the distribution of the quadratic residues and non--
residues, or more generally the kth power residues and non-residues, to a
large prime modulus p. If k& > 2, we shall always suppose p=—1 (mod k); as
is well known, this involves no loss of generality.

One of the simplest questions that presents itself is that of the order
of magnitude of the least quadratic non-residue @ to a large prime modulus p.
It was proved by VINOGRADOV!) in 1919 that

(1) d=O(p*“log’p), where «= .
2)e
VINOGRADOV based his proof on an inequality discovered by him =), which is
substantially equivalent to POLYA’s inequality *) that
* 1
) > 7(n) = O(m* log m)
n=1

for any proper Dirichlet character y(n) to modulus m > 1, and any positive
integer x. For the proof of (1) one needs, of course, only the case of POLYA’s

inequality when m is a prime p and y(n) is the Legendre symbol {; l

In § 2 we prove that
1

{3) d=0((p* log p)*), where ;-

This result is better than (1) only in the exponent of the logarithm, which is
unimportant. But the proof is of some interest, in that an elementary identity
) See Trans. Amer. Math. Soc., 29 (1927), 209—217 and 218—226. The second of
these papers gives a reference to the original publication in 1919,
) See the first of the papers in 1).
8) Nachrichten K. Ges. Wiss. Gottingen, Math. — phys. Klasse, 1918, 21—29.
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[(4) below] is used in place of POLYA’s or VINOGRADOV's inequality. It may
be recalled that the proof of POLYA’s inequality, though not very difficult,
depends on the use of Gaussian sums; and VINOGRADOV’s proof of his own
inequality, though elementary, is not altogether simple.

In § 3 we give estimates for d,., the least kth power non-residue (mod p),
when k is fixed and p is arbitrarily large. For k- 3, the result is the same
as VINOGRADOV's %), but for larger values of & we obtain more precise estimates
than his by making use of recent work of DE BrRUIN and others®) on the
number of numbers up to x which are divisible by at least one prime greater
than y. .

Another problem that arises when k> 2 is the order of magnitude of
the least kth power non-residue in any given one of the k—1 classes of non-
residues. In § 4 we give an 1estimate when k=3, and in § 5 we prove that

an estimate of the form O(p® "), where 1 — y(k) >0, is valid for any £.
The value of 2 is very small, but it is difficult to see how one can obtain
a reasonably good result without making some assumption about the arithmetical
nature of £.

Finally, in § 6 we add some general remarks about the distribution of
the quadratic residues and non-residues in sets of consecutive integers. We
draw attention to the problem of estimating the maximum number, say H, of
consecutive quladratic residues or non-residues. All we are able to prove is

that H— O(p?).
§2.

Lemma 1. Let y(n) be a non-principal character to the prime modulus-
p, and let h be an integer with O < h < p. Then

h

4) SNy (x+n)| —=ph—1,
n=1] |

where the outer sum is over a complete set of residues (mod p).

Proof. The sum on the left of (4) is

n hi n!
Ok 2

k
22 . 2(x+n) z(x+ny),

— — Z(x I
& n==l r m o
e

where the bar denotes the complex conjugate. Since |y(x+n)[*is 0 if x-+n=0
(modp) and 1 if x--n=0 (mod p), the value of the first double sum is

) See the second paper referred to in 1).
5) Proc. K. Akad. Wet. Amsterdam, A, 49 (1951), 50—60. See the references given
there to work by Bucustae, Cuowra and Vijavaraauavan, and Ramaswami.
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(p—1)h. We shall prove that®)
() 2 x(x4m) g (x+n)——1

for n, =n, (mod p). This will imply that the value of the triple sum above
is —h(h—1), whence the result.
To prove (5), it suffices to observe that the congruence

x+nm=y(x+n,) (mod p)
establishes a one-to-one correspondence between all x with x == —n, and all
y with y==1. Hence the sum in (5) is

2 =—z(1)=—1.
y=EI1

Theorem 1. Let d be the least positive quadratic non-residue to the
prime modulus p. Then d satisfies (3).
1
Proof. We take h—[p* log p] in (4), and use only the terms x —1,..., A
in the sum. We have
{' x+n

P al
U

1=1

| = h—2N(x, x-+h,

where N(x, x-/) denotes the number of quadratic non-residues m satisfying
x+l=m=x+h c

Since d is the least quadratic non-residue, every quadratic non-residue
must be divisible by at least one prime =d. Hence

Ll

where ¢ runs through primes. By well known results in the elementary theory
of primes, the last sum is

N x+hy= Y -‘|"—‘;—"

=q=r+h l

= l&lg+fL

AIsSg=

< h(loglog 2h—log log d) - -Ig’ghd,

where ¢, is a constant. Hence

i

e 3 et 0 £SO IR b B b et e L

—1( 2 | > |1—2loglog 2h-+2loglog d— = |
for xe=1,.... L

Applying (4), we obtain
1
26 " He 2

I—21log log 2/1 + 2 log log d_logd L iczp

) The relation (5) occurs in Jacossthal's doctoral dissertation (Berlin, 1906), but may
well have been known to Gauss.
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[It should be noted that if the expression on the left is negative the argument
does not apply, but then the result is obviously valid.] We therefore have

log2h _ 1 C,

"€ Jogd 2 " logd’

log 2h _ ' C;
logd ¢ [_1—5;;&_)-

|
logd <e 2 log 2h--c,.
The conclusion (3) now follows.

§3. .

Lemma 2. Let u(x,x") denote the number of positive integers not
1

exceeding x which have at least one prime factor =x", where u=1 is fixed.
Then

1
(6) lim xty(x, x")=1—o(u),

where o(u) is the continuous positive and decreasing function defined by
\  o(u)—1—Ilogu for 1=u=2,

(7) | uo'(u) — —o(u—1)  for u=2.
Moreover
(8) o(u) — exp(—u log u—ulog log u -+ O(u))

for large u.
For proofs see the paper referred to in®) and other papers cited in it.

Theorem 2. Let d. be the least positive kth power non-residue (mod p),
where k > 2 is fixed, and p is a large prime =1 (mod k). Then

9) d. = O(p**)
for any fixed >0, where «.— ((2uw,)"' and u, is the (unique) solution of

o(u) —}{— :

Proof. For simplicity we base the proof (which is essentially VINOGRADOV’S)
on POLyA’s inequality (2) rather than on the identity (4), though this would
also be possible. Let y(n) be a primitive character (mod p) of order k. Then

z(m)+ ¥ (m)+ - + ' (n)
has the value k—1 if n is a kth power residue and —1 if n is a kth power
non-residue. Thus, for any positive integer x,

"._}__:(z(m + o (1) = (k—1)x—kN(x),
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where N(x) is the number of kth power non-residues among 1,2,...,x. It
follows from POLYA’s inequality that

N(x) — |.'1 — “x— O(P?! log p).

Any kth power non-residue is divisible by at least one prime —d,.
Hence '
N(x) = "rtj(x’ d-‘-‘)t
1
in the notation of Lemma 2. Taking x- [p? log® p], for example, we reach
1

a contradiction if there are arbitrarily large primes p for which d. > x*, where

}{ ; for then x'w¥(x,d.) would be

less than 1— -}{- by a fixed amount for such primes. This leads to the result

r is any fixed number for which o(r) >

stated.

Corollary, The values of the exponent «, for k— 3,4,5 are

@

oy ; e 3 —0.2567...,
a,=0.235...,
= 0221 ...,
Moreover for large (but fixed) k, we have
1 loglogk ¢

W52 ek gk
where ¢, is a constant. ¢
Proof. The value for u,, and hence for «,, follows from the first part of

the definition of o(u) in (7). For u, and u,, we observe that, for 2=u -3,
w-1

(10) o(w)—1—logu+ | 1°8 at.
:

1-4-¢

On calculating the integral numerically, one is led to the values u,==2.124...,
u,—2.257..., whence the values stated for «,,«,. The inequality for e«
when k is large follows at once from (8).

§ 4.

LIPS 0.383 approximately, where u denotes the

-Theorem 3. Let v
2u

solution of
LATE |

(11) | log u -+ ‘ :oga; b i ; :

1
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Then each class of cubic non-residues (mod p) contains a positive integer less
than p’* for any fixed positive ¢, provided p is sufficiently large.

Proof. Let d denote the least cubic non-residue (mod p). Let y(n) be a
character to the modulus p of order 3, and let y(d)=Z<, so that T is one of
the two complex cube roots of 1. Let f be the least positive integer for which
2(f)-— . Our object is to estimate f. Plainly

(12) f=d-

This in itself is useless as an estimate for f, but will be needed later.
1
Let x - [p® log® p]. It follows from POLYA’s inequality that the number

N.(x) of positive integers n=Xx for which y(n)= ' satisfies

a3) N.(x)= 5 x+O(p* log p).

Any such number n must either have a prime factor = f or have two prime
factors each =d. Hence

14 N(x)= D >35> |_
(14) W= 3 |T|+2 == lag

gy =:

where ¢ and ¢ run through primes. We can replace ¢ in the limits of the
1

double summation by f2, in virtue of (12).
1 1 1

We can suppose that f2 = x*, since otherwise f< p* “and the desired
result holds. Under these circumstances we have the identity

-=x[)
e )

‘ :

(15) P H= 3 E

P=q=r C P=e<e
99’ =

1
For the first sum counts how many multiples = x there are of primes =f*,

and the second counts how many multiples = x there are of two distinct
1

primes each = f2. The latter are counted twice in the first sum. Hence we
obtain the number of numbers =x which have at least one prime factor
1 1

= f*, which is w(x,f?).
1
Adding (14), with d replaced by f%, to (15), we obtain

2]+, oo
A=g=:s

the term o(x) being an allowance for the fact that the double sum in (14)

has ¢ = ¢’ whereas that in (15) has ¢ < ¢".

N+ )= X |

D17



258 H. Davenport and P. Erdés

Using (13) and approximating to the sums in the usual way, we obtain

1 o JoBX (0o 2l0gx o 3
5% log og f -+ log log —xt(x, f2)+o(1).

1
If f— x-, this gives
; < log v +log 20— (1—o(2+)) +o(1),
by Lemma 2. Since 2 < 2 < 3, it follows from (10) that
Ap-1
log r+log 20— 1 -+0(2r) — log - -Ilo_g_-!;—dt.

1

This leads to the result stated.

§ 5.
Throughout this section & will be a fixed positive integer greater than 2.

Theorem 4. There exists a positive number 1, depending only on k,
with the following property : for every sufficiently large prime p-—1 (mod k),

each of the k—1 classes of kth power non-residues (mod p) contains a positive
1

integer less than p*

Proof. We define positive numbers o, > d, > ..., depending only on k,
as follows:

1 1 R
(16) O == LT O = 2 (0,).
Let » denote the total number of prime factors of & (multiple prime factors
counted according to their multiplicity). Let

(] 7) f) = 2T_|l,_.]_ (()‘,-)_.
Let

I
(18) x==p-* log* p.

We shall prove that, for sufficiently large p, each class of kth power non-
residues contains a positive integer less than x'°. This implies the result, on

taking 1 to be any fixed number less than ; 0.

Let P,=x% for s=1,2,...,v+1, so that P,> P, >.... The primes
= P, belong to certain classes of kth power residues and non-residues, and
these classes generate a subgroup 9. of the group & formed by all the k
classes. Plainly

HicHc---chHCE.
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Since the order of a subgroup is a factor of the order of the group, the
group (5 cannot have a chain of distinct subgroups, each contained in the next,
which comprises more than » subgroups in addition to (5 itself. Hence either
W= or Ou1=5, for some s with 1 =s=17.

Let A be any particular class of kth power non-residues (mod p). We
shall assume that every number belonging to the class A is = x'-9 and shall
deduce a contradiction.

If the class A is contained in the subgroup 9,, the argument is very
simple. The subgroup %, is generated by the classes of the primes = P,, and
so the class A is representable as

A Ol O,

where C,, ..., C, are the classes of various primes = P,, and m,, ..., m, are
positive integers. We can suppose that m,--...--m,= k. For otherwise the
classes

Ct (1=t=m), CC:(lst=m),..., C"--C'Cr(1=t=m,)

could not all be distinct, and on dividing two such identical classes we
would have a representation of the unit class with non-negative exponents
not exceeding m,, ..., m, respectively. This would lead to a representation of A
with smaller exponents, and eventually to a representation with m, -+ ... -m, = k.

Such a representation implies-that there is a positive integer in the class A
which is

- P;il|+A..+r|l,- __H____.P:. e ka et xl—ljg < xl-l}
and this is contrary to the hypothesis.

We can now suppose that the class A is not contained in the subgroup
9,. This implies in particular that ©, == (5, and consequently that

Ll

Poii =Ha
for some value of s. This value of s will be fixed throughout the subsequent
argument. :

We can factorize each number m in the class A into primes as follows:

m=q&qs:...rhr...=qr, say,

where ¢,,... are primes which do not belong to classes in the subgroup
0= D), and ry,... are primes which do belong to classes in that sub-
group. Plainly

(19) G=P..
Moreover,
(20) qg= x!-8-kd, 41

For since r belongs to a class in the subgroup ©.., we can find, by the
argument used above, a number r’ in the same class as r and satisfying
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r'=(P...)" — x*%+1. If ¢ did not satisfy (20), the number g7 would be in the
class A and would be less than x' %, contrary to the hypothesis.

By PoLyA’s inequality and the definition of x in (18), the number of
numbers m in the class A satisfying m = x is
t+0(555)

k" logp
On the other hand, each such number m is divisible by some number ¢ which
satisfies (20) and whose prime factors all satisfy (19). Hence the number of
numbers m = x in the class A does not exceed

o5 o e

i=e g
where ¢ runs through numbers of the above kind. It follows, writing
== x1-0-k041, that

< 1 2 1 Cs

A v%-q k  logp’
where every prime factor of q satisfies (19), and where ¢, is a constant.

To estimate the sum on the left of (21) we use the following device,
which has the advantage of simplicity, though the result it gives is no doubt
crude. We express each ¢ as ¢,f, where ¢, is a prime = P, and f is either
1 or is composed entirely of primes = P,. Then
T
FEu e

Py =g =1

»

’

g
22 2 -:.:
(22) =q=xq =

¥
h t

where ¢, is restricted to primes and ¢ is either 1 or is composed of primes
= P,.

The prime g, is restricted to an interval P= ¢, = Q, where P= P, and
—gf_‘—.‘ —;C—. Hence, by the well known estimate for a sum of reciprocals of
primes, we have

3 1 log Q |
1 g
—-q,<10glogP {IogP)
log P+ 108'_
= log— —T@P‘ 0 t]og P/ )
S log P+ log > CURT )
= g—logT T llogp
lo 0, +d+kda -f‘o( ‘)
0. logp.
- f,—’—kdu-»—l |

< —

d. (_'ua'gja]-
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As regards _\_-} we have obviously
-1 "
N 1] iy ( 1
b S I e
gt H;_I](] o 5 re logp !’

where @ runs through primes.
On substituting these estimates in (21) and (22), we obtain
0+4k0,,, _ 1 C;
@y  “k logp’
where ¢; is a constant. By (16) this implies

= X s Gy
0= 2k (0.) log p
o S
=5z (0 — log p

In view of (17), we now have a contradiction if p is sufficiently large. This
proves Theorem 4.

§ 6.

It is natural to consider the possibility of generalizing the identity of
Lemma 1 so as to obtain an asymptotic formula for the corresponding sum
with the exponent 2 replaced by any positive integer. The result is given in
the following lemma. It does not seem to throw any light on the problem
of the magnitude of the least quadratic non-residue, but it enables us to
prove (in Theorem 5 below) that the distribution of the sum

~+h [
(23) sw=2 |4
n=a+1\ D
for large p is normal (or Gaussian) provided /4 is taken to be a function of
p satisfying appropriate conditions.

Lemma 3. Let p be an arbitrarily large prime and let h be any integer
satisfying 0 < h < p. Let v be a fixed positive integer. Then

2 (S()) =13...2r=1)(p—31) (h— 91 + O’ p™),

where «, depends only onrand «,< 1, and where 0 —=60=1, 0=60" = 1. Also
S = 0w p").

Proof. Consider first the case of the exponent 2r. We have

1 I
; 25 S 3 =y +n). .. (x4 1o,
_‘ (Silx))*" - -\a“'.\...\. i) p"‘ ) |

The sets of integers n,,...,n,, can be divided into two types. If the
set comprises at most r distinct integers, each of which occurs an even number
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of times, we say that it is of the first type. In this case, the polynomial
(x-+n)---(x+ny,) is a perfect square, and the value of the sum extended
over x lies between p—r and p. Hence the contribution of the sets of integers
n,...,n, of the first type is

F(r, h)y(p—"Hr),

where F(r, h) is the number of such sets and 0 =6=1.

Now consider the remaining sets of integers n,, ..., n,,.. For these, the
polynomial (x-n,)---(x-n,,) is not congruent (mod p) to the square of
another polynomial, since it has a zero of odd multiplicity. Under these
circumstances it is known ) that

) O Yo N

= (x+m)---(x+ n.y) 0(p™),

z \ P d
where «, depends only on r and «, < 1. Hence the contribution of sets of
the second type is O(h*"p™).

It remains only to estimate the number, say F(r, h), of sets of integers
Ny, ..., with 1 =n;,=h, which comprise at most r distinct integers each
of which occurs an even number of times. The number of ways of choosing
exactly r distinct integers from 1,2,..., 4 is A(h—1).--(h—r 1), and the
number of different ways of arranging these as r pairs is (2r—1)(2r—3)...
5.3.1. Hence
F(r,h)=13...2r—1)h(h—1)...(h—r-+1).

On the other hand, the number of ways of choosing at most r distinct integers
from 1,2,...,h is =/', and, when these have been chosen, the number of
different ways of arranging them in 2r places (each occurring an even number
of times) is at most (2r—1)(2r—3)...5.3.1. Hence
F(r,h)=13...2r—1)A".

Thus

F(r,h)=13...2r—1)(h—6'r),
and the result follows.

The result for the sum with an odd exponent is now obvious, since
in this case there are no sets of the first type.

Theorem 5. Let h be any function of p satisfying

log h
(24) h— o~ 5 hig? —0 as P —o0,

) By a theorem of Davexrort [Acta Math., 71 (1939), 99—121; see formula (13)] the
result holds with e, — (4r -} 3) (4r + 6). A much deeper theorem of A. Wei would allow

one to take «, =

1| —-
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Let S)(x) be defined by (23) for primes p. Let M,(Z) denote the number of
infegers x with 0= x < p for which
I
Si(x)=ih>.
Then

i
1

1 ; §i [
-M,(R) — e ? dt as p—o
p ( ) | 2‘_,'.:_ ¢ p

for each fixed i.

Proof. We observe first that in view of the conditions imposed on / in
(24), it follows from Lemma 3 that
R = . :
pl(h *Su(x)) s u, as p—rox
for each fixed positive integer r, where

(25)

Y 1.3...(2r—1) if r is even,
I 0 if ris odd.

723

Let N,(s) denote the number of integers x with O=x < p for which
Si(x)=s. Then N,(s) is a non-decreasing function of s which is constant
except for discontinuities at certain integral values of s. Also N,(s)—0 if
s< —h and N,(s)=p if s=h. Obviously

I

M, (2) = N, (ih?).

Collecting together the values of x in (25) for which S,(x)=3s, we

obtain
1 J'.1 1
(26) o, (2 AN =N (s— 1)} = .
g==h
Define @,(f) by
1 : 1

27 D,(t)= - N,(th* M,(t).
(27) (t) > W(th*) » (t)

Then, by the definition of the STIELTJES integral, the left hand side of (26) is

.|'-r"d D, (1)

= 0

Putting

1 F ¥
O(l) = — 2
® V2 . :

x

2

du,
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we have
l‘ t"dad(t) e ] t'e 7' “dt -
.'l. 12 - Q0
Hence
(28) Fdd, ()~ | tdd(t) as p~,

- 30 -

for any fixed positive integer r. The assertion of the theorem is equivalent,
by (27), to the assertion that

(29) D (2)— D(2) as p—roc
for each real number £.

The fact that (28) implies (29), when @,(f) is the special function
defined above, is well known in the mathematical theory of probability. We

outline one method of proof. If (29) is false for a particular 2, we can suppose
without loss of generality that there exists d >0 such that

(30) D(4)= D)+ 0

for infinitely many p. There exists®) a subsequence, say g, of these p such
that @,(t) converges to a non-decreasing function @*(f) at every point of
continuity of this function, and

x

|t d ).

% ®
Jtda'(ty—1im |t'dw,(t)
% Ir®_ep

Also @*(t)—0 as t—»>—~ and @*(f)—1 as t—+ . It now follows

from the well known uniqueness of this special moment problem that

@*(t)= a(t) for all {. This contradicts (30), and the contradiction establishes

the desired result.

An interesting problem is that of the order of magnitude of the maximum
number of consecutive quadratic residues, or of consecutive quadratic non-
residues, to a large prime modulus p. Denoting these maximum numbers by
H. and H , it follows from Lemma 1 that

1 1
(31) H,=0(p?), H_ = 0(p*?).
For if the numbers x--1,x-+2,...,x- H all have the same character, then
the sum

S(e)

=iy p )

%) See the two theorems of Hewry in the introduction to J. A. Swonat and J. D. Tamarkin,
The problem of moments (Math. Surveys No. 1, New York 1943).
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where / ::B HI, has the value i or —h for at least i consecutive values

of x, and the lemma implies A*=ph—»Ah’, whence the result. We have not
been able to improve on the estimates (31).

As regards results in the opposite direction, it can be shown") that
there are infinitely many primes p for which

1
H. >c/(log p)*, _
and similarly with H., where ¢, is a positive constant. By using the result
of A. WEIL it is possible to improve this lower bound to ¢,log p.

(Received August 4, 1952.)

Note added January 1953. We observe that the identity of Lemma 1 is
given in VINOGRADOV's Osnovy teorii Cisel, p. 109.

7) See § 9 of the paper referred to in %),



