On algebraically closed abelian groups. By S. GACSÁLYI in Debrecen. #### § 1. Introduction. Let A be an additive abelian group. By x, a, b, c we denote group elements, while the other small Latin letters are reserved for elements of an operator ring which, with the exception of \S 3, coincides with the ring of rational integers. An "algebraic" equation with an unknown x in A, constructed by the aid of addition as the only operation defined in A, can always be written, by the commutativity of A, in the form $$nx = c.$$ If (1) is solvable in A for every $c \in A$ and any integer n > 0, then we call A an algebraically closed (abelian) group in the sense of T. Szele [6]. This fact is obviously equivalent to nA = A $(n = 1, 2, 3, ...)^1$) A full structural characterization of the algebraically closed abelian groups is given by the well known fact that such a group is a direct sum of rational groups and groups of type (p^{∞}) , and conversely. However, we shall make no use of this fact. T. SZELE has raised the question whether or not in an algebraically closed (abelian) group A every compatible system of equations in several unknowns admits a solution which lies in A. This question is answered affirmatively in the present note. Moreover, a generalization of this result for abelian groups with operators is given. As an application we obtain a theorem concerning the solvability of a system of linear equations over a skew field, without any restriction on the cardinal number of the equations and of the unknowns. ¹⁾ The terminology "algebraically closed abelian group" is motived by the analogy between these groups and algebraically closed fields (see [6]). See also footnote²) below. ## § 2. Algebraically closed abelian groups. Let us consider a set of indeterminates x_r , where r ranges over an arbitrary set of indices (ordered or not). Further, let $\{f_{\mu}(x) = c_{\mu}\}$ be an arbitrary set of equations (2) $$f_{\mu}(x) = r_{\mu 1} x_{\nu_1} + r_{\mu 2} x_{\nu_2} + \cdots + r_{\mu k} x_{\nu_k} = c_{\mu}(\in A),$$ each $f_{\mu}(x)$ containing only a finite number of terms; the coefficients $r_{\mu i}$ in (2) are rational integers. Clearly, the most general form of a system of algebraic equations in an abelian group A is $\{f_{\mu}(x) = c_{\mu}\}$ where the c_{μ} 's are given elements of A. We say that the system $\{f_{\mu}(x) = c_{\mu}\}$ is compatible, if any identity $$s_1 f_{\mu_1} + s_2 f_{\mu_2} + \cdots + s_l f_{\mu_l} = 0$$ (for a finite number of the f_{μ} 's) implies $$s_1c_{\mu_1}+s_2c_{\mu_2}+\cdots+s_lc_{\mu_l}=0.$$ Now we prove the following **Theorem 1.** If A is an algebraically closed abelian group, then every compatible system $\{f_{\mu}(x) = c_{\mu}\}\$ of equations in A admits a solution $x_{\nu} = a_{\nu} \in A$. *Proof.* Consider a compatible system $\{f_{\mu}(x) = c_{\mu}\}$ of equations in an arbitrary algebraically closed abelian group A. Then there exists one (and essentially only one) abelian group G obtained by adjoining to A elements x_{ν}^* subject to the relations $f_{\mu}(x^*) = c_{\mu}$, i. e. (3) $$r_{\mu 1} x_{\nu_1}^* + r_{\mu 2} x_{\nu_2}^* + \dots + r_{\mu k} x_{\nu_k}^* = c_{\mu}.$$ As a matter of fact, the compatibility of the system $\{f_n = c_n\}$ implies that the group G so defined contains A (itself and not only a homomorphic image of A) as a subgroup. According to a theorem of R. BAER [1], A, as an algebraically closed group, is a direct summand of every containing abelian group: $$G = A + B$$. Consequently, every element in G may be represented in one and only one ²) Theorem 1 can be regarded as a further statement justifying the terminology "algebraically closed abelian group". From this point of view the following remark is of some interest. Theorem 1 implies that an abelian group A is algebraically closed if and only if every system of equations which can be solved in some abelian group containing A, can also be solved in A itself. Then one sees that the notion of algebraically closed abelian group is the abelian analogue of the notion of algebraically closed group recently introduced by W. R. Scott [5] and B. H. Neumann [3]. The similarity of these terms involves no confusion, since an algebraically closed group can never be abelian (it is even always an infinite simple group; see [3]). The two concepts are in the same relation as "free group" and "free abelian group". way in the form a+b with $a \in A$ and $b \in B$. This applies in particular to the elements $x_v^* \in G$ so that $$x_{\nu}^* = a_{\nu} + b_{\nu} \quad (a_{\nu} \in A, b_{\nu} \in B).$$ Then (3) implies (4) $$r_{\mu 1}(a_{\nu_1}+b_{\nu_1})+\cdots+r_{\mu k}(a_{\nu_k}+b_{\nu_k}) = \\ = (r_{\mu 1}a_{\nu_1}+\cdots+r_{\mu k}a_{\nu_k})+(r_{\mu 1}b_{\nu_1}+\cdots+r_{\mu k}b_{\nu_k}) = f_{\mu}(a)+f_{\mu}(b) = c_{\mu}.$$ Since c_{μ} is an element in A, it follows that $f_{\mu}(b) = 0$; and so the equations (4) show that the elements $x_r = a_r \in A$ yield a solution of the system $\{f_{\mu}(x) = c_{\mu}\}.$ ## § 3. Algebraically closed abelian groups with operators. Now we are going to generalize Theorem 1 for groups with operators. We consider an additive abelian group A admitting a ring R with unit element 1 as a left operator domain. We assume, furthermore, that 1a = a for each element $a \in A$. In the case treated in the previous section, R was the ring of rational integers. In accordance with this we use for the notation of elements of R the same symbols (e. g. r, s) as previously for integers. Let L be a left ideal in R. An operator homomorphism of L into the group A is a single valued function I^a of the elements I in L with values in A, which satisfies $$(r_1l_1+r_2l_2)^{\alpha}=r_1(l_1^{\alpha})+r_2(l_2^{\alpha}); (r_i\in R, l_i\in L, i=1,2).$$ We recall an important result of R. BAER [2] which generalizes BAER's theorem mentioned above: The abelian group A over a ring R with unit element is a direct summand of every containing abelian group over R if and only if A possesses the following property: (P): To every left ideal L in R and to every operator homomorphism $l \rightarrow l^{\alpha}$ of L into A there exists some element a in A such that $l^{\alpha} = la$ for every l in L. Now, generalizing Theorem 1, we can prove, in the same way as in § 2, the following **Theorem 2.** If A is an abelian group over a ring R (with unit element) with the property (P), then every compatible system (2) of equations in A admits a solution in A. According to this theorem the abelian groups over R with the property (P) generalize the concept of algebraically closed abelian groups to the case of groups with operators. ## § 4. Systems of linear equations over a skew field. A skew field F can be regarded as an additive group F^+ admitting F itself as a left operator domain. Hence, as the group F^+ possesses obviously the property (P) (with R = F), Theorem 2 implies the following **Theorem 3.** Every compatible system of linear equations (with an arbitrary cardinal number of the equations and an arbitrary cardinal number of the unknowns) over a skew field F admits a solution in F.³) I owe Professor B. H. Neumann the following formulation of Theorem 3: An arbitrary system of linear equations over a skew field F admits a solution in F if and only if any finite subsystem possesses a solution in F. Thus the solvability being a property of "finite character", we have by Tukey's lemma: Any system of linear equations over a skew field contains a maximal solvable subsystem. For the sake of completeness we give an immediate proof of this Theorem 3, without making use of the theorem of BAER quoted in § 3. By virtue of § 2 it is sufficient to prove the following statement which is of course a special case of the theorem of BAER: An arbitrary abelian group A over a skew field F is a direct summand of every containing abelian group G over F. As a matter of fact, let B be a greatest (admissible) subgroup of G whose meet with A is 0. The subgroup of G generated by A and B is their direct sum; and hence it suffices to prove that A+B=G. For this purpose we consider an arbitrary element $c \neq 0$ of G. The maximal property of B implies $$(A+B)\cap Fc \neq 0$$ where Fc denotes the (admissible) subgroup of G generated by the element c. Thus a relation $$sc = a + b = 0$$ $(s \in F, a \in A, b \in B)$ holds, and consequently $$c = s^{-1}a + s^{-1}b \in A + B$$ which completes the proof. Remark. The statements expressed in Theorem 3 and in its above corollary are by no means trivial, as is shown by the following counter example of an ordinary abelian group C (with the ring of integers as operator domain). Let C be an infinite cyclic group generated by the element a. Consider the system of equations $$x_1+2x_2=a$$, $x_2+2^2x_3=a$,..., $x_n+2^nx_{n+1}=a$,... ³⁾ Of course, however, each single equation contains a finite number of unknowns only. Every finite subsystem of this system admits obviously a solution in C, although the whole system is not solvable in C. More exactly, a subsystem of this system is solvable in C if and only if it does not contain an infinity of the above equations. Hence the system has no maximal solvable subsystem. (The above system of equations was suggested by a famous group construction due to L. Pontrjagin [4]). #### Bibliography. - [1] R. Baer, The subgroup of the elements of finite order of an abelian group. Ann. of Math. Princeton (2), 37 (1936), 766-781. - [2] R. Baer, Abelian groups that are direct summands of every containing abelian group. Bull. Amer. Math. Soc., 46 (1940), 800-806. - [3] B. H. Neumann, A note on algebraically closed groups. J. London Math. Soc., 27 (1952), 247—249. - [4] L. Pontrjagin, The theory of topological commutative groups. Ann. of Math. Princeton (2), 35 (1934), 361—388. - [5] W. R. Scott, Algebraically closed groups. Proc. Amer. Math. Soc., 2 (1951), 118—121. - [6] T. Szele, Ein Analogon der Körpertheorie für abelsche Gruppen. Journal f. d. reine u. angew. Math., 188 (1950), 167—192. (Received September 29, 1952.)