The maximum term and the rank of an entire function.

By S. K. SINGH in Aligarh (India).

Introduction.

We indicate first of all certain notations which we shall use in this work. Let $f(z) = \sum_{0}^{\infty} a_n z^n$ be an entire function of finite order ϱ . Let $\mu(r)$ be its maximum term for |z| = r and $\nu(r)$ its rank; n(r, a) denotes the number of zeros of f(z) - a in $|z| \le r$. We write also n(r, a) = n(r) and $M(r) = \operatorname{Max} f(z)$.

An entire function f(z) is said to have a as an exceptional value if

$$\lim_{r\to\infty}\sup\frac{\log n(r,a)}{\log r}=\varrho(a)<\varrho.$$

S. M. SHAH [1] has proved the following theorem.

For a canonical product of integral order $\varrho \ge 1$ and genus $p(=\varrho \text{ or } \varrho - 1)$

$$\lim_{r\to\infty}\sup\frac{n(r)\Phi(r)}{\log M(r)}=\infty$$

holds where $\Phi(x)$ is any positive continuous non-decreasing function of x such that

$$\int_{A}^{\infty} \frac{dx}{x \, \Phi(x)}$$

is convergent.

I prove below some results of the above nature for any entire function.

§ 1.

Theorem 1. (I) If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is an entire function of order ϱ ($0 \le \varrho < \infty$) and if $\Phi(x)$ is a function such that

$$\log x = o(\Phi(x)),$$

then we have

$$\lim_{r\to\infty}\frac{\nu(r)\,\Phi(r)}{\log M(r)}=\infty.$$

(II) If the order ϱ is such that $0 < \varrho < \infty$, then

$$\lim_{r \to \infty} \sup \frac{r(r) \Phi(r)}{\log M(r)} = \infty$$

for any $\Phi(x)$ tending to infinity.

We observe that the hypothesis on $\mathcal{D}(x)$ in the first part of the above theorem allows the integral

$$\int_{-\infty}^{\infty} \frac{dx}{x \, \mathcal{D}(x)}$$

to be divergent: for instance by taking $\Phi(x) = \log x \log \log x$.

Proof. (I). It is sufficient to prove that

$$\lim \sup_{r \to \infty} \frac{\log u(r)}{v(r) \Phi(r)} = 0,$$

as the result then follows since $\log \mu(r) \sim \log M(r)$. Now

$$\log \mu(r) = A + \int_{r_0}^{r} \frac{\nu(x)}{x} dx < \nu(r) \left[\log \left(\frac{r}{r_0} \right) \right] + O (1).$$

So

$$\log \mu(r) < 2\nu(r) \log r.$$

Hence

$$\log \mu(r)/\nu(r) \Phi(r) < 2\log r/\Phi(r)$$

and the result follows from (1).

The proof of (II) is immediate with the help of theorem 1 of S. M. Shah [3].

In the first part of the theorem if

$$\lim_{r\to\infty}\sup\frac{\log M(r)}{(\log r)^2}<\infty,$$

then v(r) can be replaced by n(r) as in such cases $v(r) \sim n(r)$ holds [4].

But if we do not impose any restrictions as to the nature of the function, then r(r) cannot always be replaced by n(r). For instance if z = 0 is an exceptional value of f(z), then

$$\lim_{r\to\infty}\frac{n(r)\,\mathcal{D}(r)}{\log M(r)}=0,$$

because then

$$\log M(r) \sim Tr^{\varrho} \qquad (0 < T < \infty)$$

and

$$n(r) = O(r^c) \qquad (c < \varrho).$$

So

$$\frac{n(r)\,\Phi(r)}{\log M(r)} < \frac{Kr^c\,\Phi(r)}{\log M(r)} \sim \frac{K'\,\Phi(r)}{r^{\varrho-c}} \to 0$$

where we can take $\Phi(x)$ even as large as x^{δ} $(0 < \delta < \varrho - c)$.

We are proving now the

Theorem 2. If a is an exceptional value of f(z) then

$$\lim_{r \to \infty} \frac{n(r, x) \Phi(r)}{\log M(r)} = \infty \quad \text{for all} \quad x \neq a$$

and for any $\Phi(x)$ tending to infinity.

Proof. Let $\varrho(r)$ be the LINDELÖF approximate order of f(z), then

$$\frac{n(r,a)}{r^{\varrho(r)}} \to 0 \text{ as } r \to \infty,$$

because

$$n(r,a) = O(r^c) \qquad (c < \varrho)$$

and

$$\varrho(r) \to \varrho \text{ as } r \to \infty.$$

Hence the ratio $\frac{n(r, x)}{r^{\varrho(r)}}$ has a positive lower bound (see [4], p. 87) for all x = a.

Now

$$\frac{n(r,x)\Phi(r)}{\log M(r)} = \frac{n(r,x)}{r^{\varrho(r)}} \frac{r^{\varrho(r)}}{\log M(r)} \Phi(r)$$

and further $\log M(r) \leq r^{\varrho(r)}$ for all $r \geq r_0$. Hence

$$\frac{n(r, x) \Phi(r)}{\log M(r)} \ge A \Phi(r) \to \infty \text{ as } r \to \infty$$

for any $\Phi(r)$ tending to infinity.

Theorem 3. If f(z) is a canonical product of integral order ϱ and of genus $p = \varrho$ and if $\frac{n(r) \Phi(r)}{r^{p+1}}$ has a positive lower bound, then

$$\lim_{r\to\infty}\sup\frac{n(r)\,\Phi(r)}{\log M(r)}=\infty.$$

*Proof.*¹) Since

$$\log M(r) \leq K \left[r^p \int_a^r \frac{n(x)}{x^{p+1}} dx + r^{p+1} \int_r^\infty \frac{n(x)}{x^{p+2}} dx \right]$$

it is enough to prove that no finite C > 0 can satisfy

(1.1)
$$r^{p} \int_{a}^{r} \frac{n(x)}{x^{p+1}} dx + r^{p+1} \int_{r}^{\infty} \frac{n(x)}{x^{p+2}} dx > n(r) \Phi(r) C$$

¹⁾ We give the proof assuming that the function has no zeros at the origin; if it has, then a slight modification of the proof gives the same result.

for all sufficiently large r, e. g. for $r \ge R$. Now since $\int_{-\infty}^{\infty} \frac{n(x)}{x^{p+2}}$ is always convergent, les us choose R so that

$$\int\limits_{R}^{\infty}\frac{n(x)}{x^{p+2}}<\varepsilon.$$

Let us suppose that (1.1) holds for r = R, then

(1.2)
$$R^{p} \int_{a}^{R} \frac{n(x)}{x^{p+1}} dx + R^{p+1} \int_{R}^{\infty} \frac{n(x)}{x^{p+2}} dx > n(R) \Phi(R) C,$$

and

$$n(x) = O(x^{p+\varepsilon}).$$

So

$$\int_{a}^{R} \frac{n(x) dx}{x^{p+1}} < k \int_{a}^{R} x^{\epsilon-1} dx = o(R).$$

Hence the left hand side of (1.2) = $o(R^{\nu+1})$. So

$$\frac{n(R)\,\Phi(R)}{R^{p+1}}\to 0$$

in contradiction with our hypothesis, and this completes the proof of the theorem.

§ 2.

T. VIJAYA RAGHAVAN has proved [5] that

$$M'(r) \ge \frac{M(r)}{r} \frac{\log M(r)}{\log r}$$
 for $r > r_0(f)$.

We prove here an analogous result for $\mu(r)$:

Theorem 4.

$$\mu'(r) \ge \frac{\mu(r)}{r} \frac{\log \mu(r)}{\log r}$$

is valid for every $r > r_0(f)$.

Proof.

$$\log \mu(r) = A + \int_{-\infty}^{r} \frac{v(x)}{x} dx;$$

hence

$$\frac{\mu'(r)}{\mu(r)} = \frac{\nu(r)}{r}$$

and

(2.2)
$$\log \mu(r) = \log |a_n| + n \log r \text{ for } R_n \leq r < R_{n+1}.$$

Since for any entire function

$$\lim_{n\to\infty}\sup|a_n|^{\frac{1}{n}}=0$$

holds, we have

$$|a_n|<1 \quad \text{for} \quad n\geq n_0.$$

Hence $\log |a_n|$ is negative and from (2.2) we get

$$(2.4) \frac{\log \mu(r)}{\log r} \leq r(r) \text{ for } r \geq r_0(f).$$

Combining (2.1) and (2.4) we get the result of the theorem.

§ 3.

Theorem 5. If $\mu(r_0) > 1$ and one of the integrals

$$I_1 = \int_{-\infty}^{\infty} \frac{\log \mu(t) dt}{t^{m+1}}$$

and

$$I_2 = \int_{r_2}^{\infty} \frac{v(t)}{t^{m+1}} dt$$

converges resp. diverges, then the other converges resp. diverges too. Proof.

$$\int_{-\tau}^{\tau} \frac{r(t)}{t} dt = \log \mu(r) - \log \mu(r_0).$$

Hence

$$\int_{r_{0}}^{u} \frac{dr}{r^{m+1}} \int_{r_{0}}^{r} \frac{v(t)}{t} dt = \int_{r_{0}}^{u} [\log \mu(r) - \log \mu(r_{0})] \frac{dr}{r^{m+1}} =$$

$$= \left[\frac{\log \mu(r) - \log \mu(r_{0})}{-mr^{m}} \right]_{r_{0}}^{u} + \frac{1}{m} \int_{r_{0}}^{u} \frac{v(r) dr}{r^{m+1}} =$$

$$= \frac{\log \mu(u) - \log \mu(r_{0})}{-mu^{m}} + \frac{1}{m} \int_{r_{0}}^{u} \frac{v(r) dr}{r^{m+1}} =$$

$$= \int_{r_{0}}^{u} [\log \mu(r) - \log \mu(r_{0})] \frac{dr}{r^{m+1}} =$$

$$= \int_{r_{0}}^{u} \frac{\log \mu(r) dr}{r^{m+1}} - \log \mu(r_{0}) \int_{r_{0}}^{u} \frac{dr}{r^{m+1}} = \int_{r_{0}}^{u} \frac{\log \mu(r) dr}{r^{m+1}} + \frac{\log \mu(r_{0})}{m} \left[\frac{1}{u^{m}} - \frac{1}{r_{0}^{m}} \right].$$

Thus

$$\int_{r_0}^{r} \frac{\log \mu(t)}{t^{m+1}} dt + \frac{\log \mu(r_0)}{m} \left| \frac{1}{r_0^m} - \frac{1}{r_0^m} \right| = \frac{\log \mu(r) - \log \mu(r_0)}{-m r^m} + \frac{1}{m} \int_{r_0}^{r} \frac{r(t) dt}{t^{m+1}}$$

and so

(3.1)
$$m \int_{r_0}^{r} \frac{\log \mu(t) dt}{t^{m+1}} - \frac{\log \mu(r_0)}{r_0^m} + \frac{\log \mu(r)}{r^m} = \int_{r_0}^{r} \frac{\nu(t)}{t^{m+1}} dt.$$

We suppose now that I_1 is convergent; then

$$\varepsilon > \int_{1}^{2r} \frac{\log \mu(t) dt}{t^{m+1}} > \frac{\log \mu(r)}{mr^m} \left[1 - \frac{1}{2^m} \right] \text{ for every } \varepsilon > 0.$$

Consequently

$$\frac{\log \mu(r)}{r^m} \to 0.$$

Hence

$$mI_1+K=I_2$$
 $\left(K=-\frac{\log \mu(r_0)}{r_0}\right)$

holds and this implies the convergence of I_2 .

Similarly if I_2 is convergent, then

$$m\int_{r_0}^{r} \frac{\log \mu(t) dt}{t^{m+1}} + \frac{\log \mu(r)}{r^m} < K'$$

and as

$$\int_{r_0}^{r} \frac{\log \mu(t) dt}{t^{m+1}} > \log \mu(r_0) \frac{1}{m} \left[\frac{1}{r_0^m} - \frac{1}{r^m} \right] > 0$$

both terms on the left hand side are positive and this secures the convergence of I_1 .

From the convergence of $\int_{r_0}^{\infty} \frac{v(t)}{t^{m+1}} dt$ we can also deduce that $\log \mu(r) = o(r^m)$.

Further we get from (3.1) that

$$\int_{r_0}^{r} \frac{\nu(t) dt}{t^{m+1}} > \int_{r_0}^{r} \frac{\log \mu(t) dt}{t^{m+1}}.$$

Hence the divergence of I_2 follows from the divergence of I_1 .

Now let I_2 be divergent. Then I_1 will also be divergent for if it were convergent, then by the results established above I_2 will also be convergent in contradiction with our hypothesis.

§ 4.

In [6] I have proved that for 0 < r < R

$$\frac{M(R)}{m(r)} \ge \left(\frac{R}{r}\right)^{n(r)}$$

where

$$m(r) = \min_{|z|=r} |f(z)|$$

and as usual

$$M(R) = \max_{|z|=R} |f(z)|.$$

Here we shall prove further

Theorem 6. If f(z) is an entire function having no zeros in the unit circle, then

$$\frac{M(R)}{m(r)} \ge \left(\frac{R}{r}\right)^{\frac{N(R)}{\log R}} \qquad (0 < r < R)$$

where

$$N(R) = \int_{0}^{r} \frac{n(t)}{t} dt.$$

Proof.

(4.1)
$$N(R) - N(r) = \int_{r}^{R} \frac{n(t)}{t} dt = \int_{0}^{R} \frac{n(t)}{t} dt - \int_{0}^{r} \frac{n(t)}{t} dt \le \log M(R) - \log m(r)$$

by JENSEN's theorem. N(x) is an increasing convex function of $\log x$. If we draw the graph of the function N(x), it will pass through the origin. Let O be the origin and $A(\log R, N(R))$, $B(\log r, N(r))$, be two points on the graph. Then the slope of OA is greater than the slope of OB. Hence

$$\frac{N(R)}{\log R} \ge \frac{N(r)}{\log r}$$

and it follows that

$$\frac{N(R)-N(r)}{\log R-\log r} \ge \frac{N(R)}{\log R}.$$

Thus (4.1) gives

$$\frac{N(R)}{\log R} \le \frac{\log M(R) - \log m(r)}{\log R - \log r}$$

from which the result of the theorem follows.

Finally I wish to express my thanks to Dr. S. M. Shah for his help throughout the preparation of this paper and for sharpening some of the results.

References.

- [1] S. M. Shah, J. London Math. Soc. 15 (1940), pp. 23-31.
- [2] S. M. Shah, J. Indian Math. Soc. 5 (1941), pp. 179-188.
- [3] S. M. Shah, Maths. Student 10 (1942), pp. 80-82.
- [4] G. Valiron, Integral Functions, pp. 132-133.
- [5] T. VIJAYA RAGHAVAN, J. London Math. Soc. 10 (1935), pp. 116-117.
- [6] S. K. Singh, J. of the University of Bombay, 10 (1952), under print.

(Received August 15, 1952.)