Generalized complemented and quasicomplemented lattices.

By G. SzAsSz in Szeged.

§ 1. Introduction.

It is known that complemented lattices ') play a very important role both
in abstract lattice theory and in its applications to various branches of
mathematical researches.

In this paper we shall be concerned with a generalization of the concept
of complemented lattices *). First we recall the well-known definitions concerning
the classic concept of complementation ([B], p. 23):

Definition 1. By a complement of an element x of a lattice L with O
and I is meant an element y€L such that xNy=0O and xUy=1I; L is
called complemented if all its elements have complements.

Definition 2. A [attice L is called relatively complemented if all its closed
intervals®) |a, b] are complemented. By a “relative complement of x(¢|a, b])
in the interval [a, b]” is meant an element y€|[a, b] such that xNy=a and
xUy=b.

In connection with the subject of our paper we should like to call the
reader’s attention to the following points of view which seem to motivate our
treatment below :

1°. The presence of the elements O,/ is, in view of lattices of infinite
length, a too special requirement. It seems therefore to be useful fo give a
generalization of the concept of complemented lattices which is, in the case of
lattices with O, I, equivalent to the classic definition, but may be applied also
for lattices without O, I.

1) For the usual notations and terminology see G. Birknorr: Lattice theory, Amer.
Math. Soc. Colloguium Publications, vol. 25, revised edition, New York, 1948, — To this
work we refer in the following by [B].

2) In a quite different direction the author has given a generalization of the notion
of complement ; see (. Szisz, Dense and semicomplemented lattices, Nieuw Archief voor
Wiskunde, (3), vol. 1 (1953), 42—44.

) By a closed interval [a, b] (where a = b) is meant the set of all elements x of L
for which @ = x = b; |a, b] is a sublattice of L.
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2°. The definitions above enable us to define, also for lattices without
O and /, relative complements, but complements not. This means that relative
complementedness does not imply, in general, complementedness, although
the assumption to be relatively complemented is a more stronger requirement
for the structure of the lattice, than complementedness. It seems therefore to
be desirable fo extend the notion of complementedness in such a manner that
relative complementedness shall always imply “complementedness in the gene-
ralized sense”.

Now, in section 2 we give a generalized definition of complemented
lattices satisfying the requirements given in 1°—2° Afterwards we show, in
section 3, that “complemented lattices in the generalized sense” have similar
properties as ‘“complemented lattices in the classic sense”. Finally, in section 4
we introduce, as a further generalization, ‘“‘quasicomplemented lattices” as
lattices all of whose intervals [a, b] with a==0, b==1 are complemented in
the sense of section 2.

The author would like to express his gratitude to L. Fucus for his

helpful remarks concerning the definitions below.

§ 2. Complemented lattices in the generalized sense.

In view of the preceding considerations we give the following generalized
definition of complemented lattices:

Definition 3. A lattice L (either having elements O, 1 or not) is called
complemented (in the generalized sense), if given an arbitrary pair of elements
u, v, for every element a(€L) there exists at least one element x in L such
that aNx=u, aUx=nr.

For the element x of definition 3 we introduce the following symbol
and terminology :

Definition 4. Let a, u,  be arbitrary elements of the lattice L. If there
exists an element x such that aNx=uwu,alUx=v, then it will be called a
“(u, vr)-complement of a in L” and will be denoted by a..

This means, that

aNa.=u, ala,=v¢
hold for arbitrary elements a, u,~ of L (if any a. exists at all). Thus our
definition 3 may be enounced also in the following form: A lattice L is called
complemented if all elements a (¢L) have (u, v)-complements for an arbitrary
pair of elements u, .
It follows immediately from the definition 4 that (u, v)-complements are

a fortiori (¢, w)-complements for all > u, w < . Moreover, an (O, I)-comple-
ment of an element @ is a complement @’ of a in the usual sense.
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The complement a’, defined by definition 1, has the property that con-
versely, a is a complement of a’, i. e. the property of being complement is
symmetric. It is obvious from definition 4 that the property of being a (u, r)-
complement is also symmetric: for all a, a is an (u, r)-complement of a;.

After these preliminary remarks we show

Theorem 1. For lattices with O and I, definition 3 and definition 1 are
equivalent.

For, by taking a,—a’ for all a of a lattice L, complemented in the
sense of definition 1, there follows the existence of a, for arbitrary u,r, so
that L is complemented also in the sense of definition 3. Conversely, let L
be complemented in the sense of definition 3. If it has elements O and /,
then there exists at least one a;,—a’ for all @ in L, so that L is complemented
also in the sense of definition 1.

Owing to this equivalence, it is unnecessary to make distinction between
the concepts “complemented lattices in the sense of definition 17 and “comple-
mented lattices in the sense of definition 3”. Consequently, in the following
we may regard, as definition of complemented lattices, always the (more
general) definition 3.

Concerning relatively complemented lattices we show

Theorem 2. Any relatively complemented lattice L is complemented.
For, let a, u, » be arbitrary elements of L. Then
aNu=a=alv.

L being relatively complemented, there exists a relative complement ¢ of a
in the interval [a Nu, aUr]. Therefore we have
. aNt=aNu, aUt=alv,
i. e
aNt=u, alUt=v,
completing the proof of our theorem.

Theorems 1 and 2 show that definition 3 gives in fact a generalization
of complemented lattices, suitable for our points of view 1°—2° in the
introduction.

We give now two examples for complemented lattices in which at least
one of the elements O,/ does not exist:

Example 1. Consider the set R of all positive integers &, [, m, ... with
square-free prime factorization. Let k£ =/ mean that & divides /, then R becomes
a lattices with the O-element 1; however, R has no /-element. One sees
easily that k" exists for all &, [, m in R.

Example 2. Consider now the lattice L whose diagram differs from that
of R in the preceding example only in that the interval [1, 2] of L contains
a new element e with the property 1 <e < 2:
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Example 2

It is easy to see that eNk=2Nk,eUk=2Uk for all k€ L. These
relations enable us to take for e; always 2, (for all k, [€L). Hence we have
an example for a non-modular complemented lattice without /.

We give an example for a complemented lattice without O and /.

Example 3. Let us consider a line g and assign a point P on g. Let S mean
the collection of all sets*) A, ¥, ... of g which satisfy the following conditions :
(i) every element A of S consists of a finite number of left closed, right
open intervals a,,a, ..., a, of finite length >0; (ii) one of a:(i=r) contains
the assigned point P in its interior. Since the set-theoretical union and inter-
section of such sets belong obviously to the same type, S can be made a
lattice with ANV =ANY and AU Y - AU B.?) Moreover, S is a distributive
lattice and it has neither O- nor /-element. We show that S is complemented.

For, let A, 1,V be arbitrary elements of S. Let T denote the void set
(which does not belong to S); further, let 3 be an element of S such that
3=1U. We prove that the element X¥— (B3—A)U 3 is a (U, ¥)-complement
of A"). Indeed, using also the distributivity, we have

AUXI=AUXI=AURB—-AU3=TU3Z> X
and

ANX=AN[R—WU3]=[RAAER—WJUQANI)—=DUQNIe 3,
completing the proof of the complementedness of S.

%) By &€, U and N we denote inclusion, union and intersection, respectively, in the
set-theoretical sense. By A—3 we mean the set consisting of all elements of 2 which are
not included in ¥. Finally, {a,b,...} is the set consisting of the elements a,5,....

¥) Consequently, A = B means A S B,

6) We call the attention of the reader to that the set ¥ —3 does not belong to S.
That is why it was necessary to take (X —)U 3 for a (U, ¥)-complement of A
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§ 3. Complemented modular and distributive lattices.

In this section we shall give generalizations of some well-known theorems
of the theory of complemented modular and distributive lattices having ele-
ments O and /.

We recall the following results (i)—(iii):

(i) Any complemented modular lattice with O and 7 is relatively com-
plemented ([B], p. 114, theorem 1).

(ii) In any complemented distributive lattice with O and /, we have
(aUby=a'N¥ and (@aNb)y=a’'Ud" for all a, b ([B], p. 152, theorem 1).

(iii) Let a,b be arbitrary elements of a complemented modular lattice
L with O, such that a=0b. If x is a relative complement of the element a in
the interval [O, b], then it is a complement of aUb'’).

We show, by theorems 3—5, that the “natural generalizations” of these
theorems hold also for complemented lattices which have not necessarily ele-
ments O and /.

Theorem 3. Any complemented modular lattice L (with or without ele-
ments O and 1) is relatively complemented.

Proof. Let a, b and x be arbitrary elements of L such that
(1) O=)a=x=b(=)).
L being complemented, X exists. Consider now, similarly to the usual proof
of (i), an element

2) t—(@Ux))Nb—aU(x:Nb).
Obviously a=t¢=>5b; hence
(3) a=xNt=x=xUt=0b.

On the other hand, by our assumptions (2), (1) and by modularity, we
have
(4.1) xNt—xNbN@Ux))=xN@Ux)=aU(xNx)=aUa=a,
4.2) xUt—xUaU@ENb)=xUE.Nb)=(xUx)HNb=bNb—b.

Relations (3), (4.1) and (4.2) imply xN{=a,xUt—b; i.e. t is a relative
complement of x in [a, b].
By theorems 2 and 3 we have the following

Corollary. /n the case of modular lattices complementedness and relative
complementedness are equivalent concepts.

However, as (besides simple classic counterexamples of finite length,
also) example 2 shows, this equivalence does not remain valid for non-modular
lattices : in fact, the interval [1,2] forms a non-complemented sublattice of L.

7) Statement (iii) is given as an exercise without proof in [B], p. 115, ex. 2. It may
be verified on the same lines as the statement («) of our theorem 6.
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Theorem 4. In any complemented distributive lattice L,a, b, may be
taken as (aUb), and a,Ub, as (aNb), for arbitrary elements a, b, u, v of L.
Proof. By distributivity,
(@Ub)U @, Nb))—(aUbUa)N(@UbUBL)=vNv—r,
(@Ub)N(a@.Nb)=(@Na.Nb.)UdNa,Nb.)=ulu~u;
and dually for an b.
This analogy to the usual complements in Boolean algebras enables us
to make the following generalization: By a Boolean algebra is meant a com-

plemented distributive lattice (whether it has elements O, I or not).
Statement (iii) may be generalized as follows:

Theorem 5. Let a,b and u, v be arbitrary elements of the complemented
modular lottice L (with or without elements O, 1) such that u =a=>b. If x is
a relative complement of the element a in the interval [u, b, then it is a (u,r)-
complement of aUb..

Proof. By our assumptions we obfain

(5) aUx—»b, aNx—u.
Hence
(6) (aUb)Ux=(@Ux)Ub,=bUb, = .

On the other hand, (5) implies obviously the inequality x=0b, u=x.
Hence we have, by making use also of modularity for the elements a = b,
(7) (@Ub)Nx=(Ub)Nb=alU(@®.Nb)=alu.

By (7) and the obvious inequality
(aUb)Nx=x
we get, using again the modularity for the elements u = x,
(8) (@Ub)Nx=@Uu)Nx=uU@Nx)=uUu—u,
completing the proof.
If L has O-element and the element x (of the preceding theorem) is a

relative complement of @ not in [u, b], but in [O, b], then we may prove the
following stronger assertion :

Theorem 6. Let a, b and » be arbitrary elements of a complemented
modular lattice L with O such that a =b. Let further x be a relative comple-
ment of a in the interval [O, b).

(¢:) Then x is an [O, vJ-complement of aUb, for all u=a;

(#:) Moreover, for distributive L, x is a (u, r)-complement of aUb, for
all u in L. (For u=a, according to the assertion («),x is also an (O, r)-
complement of aUb;.)

Proof. First we prove («). By our assumptions we obtain
9) alx=>0, alx=0,



Generalized complemented lattices. 15

Hence we have, just as in the proof of the preceding theorem,

(10) (@aUb,)Ux=r,
and (aUb,)Nx=aUu. From the latter, by v =a, we get
(aUb)Nx=a.

This inequality, together with the obvious relation (aUb/)Nx=x and (9),
implies
(11) (aUb)Nx=aNx=0.
Inequalities (10) and (11) yield our assertion (e).

As for the assertion (#), inequality (10) may be found again in the
same manner as (6). Further, by distributivity, using aiso (9), we have

(@Ub)Nx=(@@Nx)UB:Nx)=0b.Nx=b.Nb=u
for arbitrary u, », completing so the proof.

§ 4. Quasicomplemented lattices.

Consider now the following

Example 4. Let L denote the set of all finite subsets 3, ¥,... of any
countable set © (including also the void set T). Defining in L the operations
1 and U as in example 3 we make it into a distributive lattice with the O-
element T. It is easy to prove that L is relatively complemented. Now if we
adjoin to L, as element /, the whole set %, then we give rise to a new lattice
L* with O and /. But, one sees easily that L* is no longer relatively com-
plemented (not even complemented). However, every interval [a, b], b=/, of
L* is obviously complemented.

For lattices of such type we introduce the following

Definition 5. A lattice L is called quasicomplemented if all its elements
a0, I (if O,I exist at all) have (u, r)-complements for arbitrary pairs of
elements u -0, v=+1.

Complemented lattices are a fortiori quasicomplemented. Conversely,
quasicomplemented lattices without O and I are also complemented.

Clearly, the statements of theorems 3—6 hold essentially for quasicom-
plemented lattices, excluded only the eventual intervals bounded by O or /.
In fact, instead of theorem 3 we may prove, by the same arguments as above,
the following

Theorem 3'. Every interval |a, b] of a quasicomplemented modular lattice
is complemented provided that neither a — O nor b~ 1I.
Further, all statements of theorems 4—6 hold also for quasicomplemen-
ted lattices with the obvious restrictions
a==0.1I; b==0,5; u=0; v==§;
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moreover, statement (&) of theorem 6 is for a — O trivial provided that 6= O, /5
g0, vl

For quasicomplemented lattices of finite length, which are however not
complemented, we give the following two examples:

/
0 0
Example 5 Example 6

As an exampie for a quasicomplemented, but non-complemented lattice
of infinite length we refer to our example 4 above. Examples 4—5 demonstrate
the following obvious statement. Let L be a complemented lattice with or
without O, /. Let us define two new elements O,/ such that O =x, /= x for
all x€L. If we adjoin one or both elements O,/ to L, then we get a new
lattice L which is in general already not complemented, but quasicomplemented.

However, as example 6 shows, not every quasicomplemented lattice may
be constructed by this method.

(Received October 22, 1952.)



