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Abelian groups in which every serving subgroup is
a direct summand.

By L. FuCHs in Budapest, A. KERTESZ and T. SZELE in Debrecen.

§ 1. Introduction.

It is an interesting problem to characterize all groups in which all
subgroups of a given type have certain special properties. Such problems
have been discussed recently by the second-named author’) (all subgroups
are direct summands) as well as by the second- and third-named authors®)
who have determined those abelian groups every multiple of which is a direct
summand and have given a rather full description of abelian groups every
endomorphic image of which is a direct summand. Perhaps it may be of
some interest to discuss an entirely analogous problem which arises if we
replace the term “multiple” by “serving subgroup” :*) fo characterize all abelian
groups G with

Property P. Every serving subgroup of G is a direct summand of G.

Let us observe that since the direct summands of G are obviously
serving subgroups of G, our problem may also be considered to consist in
finding all abelian groups in which the two notions: “serving subgroup”
and “direct summand” coincide.

In what follows we shall completely solve the stated problem. In §§
3—5 we shall give a characterization of all torsion, torsion free and mixed
groups of this type. Our result may be formulated as follows:

A necessary and sufficient condition that an abelian group G have
Property P is that G be representable as a direct sum
G=A+B
satisfying the following conditions :

1) See Kerresz [3). — The numbers in brackets refer to the Bibliography given at
the end of this paper.

2) See Kewresz and Szere [5)

%) For the terminology and notation we refer to § 2.
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a) A is an algebraically closed group, i.e. the direct sum of quasicyclic
groups and groups isomorphic to the additive group N of all rational numbers;

b) B is either the direct sum of cyclic p-groups such that, for each
fixed prime p, the orders of the cyclic p-groups are bounded, or the direct
sum of a finite number of groups which are isomorphic to the same proper
subgroup of M. If A is not a torsion group, then for B only the the second
alternative is possible.

The final section of this paper, § 6, is devoted to determining all abelian
groups in which every subgroup is serving. These groups coincide with the
elementary abelian groups just as in the case of the problem discussed in [3].")

§ 2. Preliminaries.

By a group we shall mean throughout a non-trivial abelian group G
written additively. If every element of G has a finite order then G is called
a torsion group. Recall that each torsion group may be represented in a
unique way as the direct sum of p-groups (called its p-components), these
being groups in which the orders of the elements are powers of one and
the same prime p. An elementary group is a torsion group whose elements have
square free orders. If all non-zero elements of G are of infinite order, then
G is a torsion free group, while a group which is neither a torsion nor a
torsion free group is said to be a mixed group.

The most important special groups which are needed below are as
follows. Cyclic groups of order p" where p is a natural prime and n a natural
integer (notation: 3(p")); quasicyclic groups or groups of type p” (notation:
3(p*)) which are isomorphic to the factorgroup of the additive group of all
rational numbers whose denominator is a power of a prime p, modulo the
subgroup of all integers ; finally, rational groups, i. e. subgroups of the addi-
tive group N of all rational numbers.

A subset S=(a,) of G, not containing 0, is called independent if for
any finite subset a,, ..., a,, of S a relation

nay,+ - M@y, =0 (n: integers)
implies
May, == M@y, =0.

By the rank of G we mean the cardinal number of a maximal inde-
pendent system of G, containing but elements of infinite order. For example,
the subgroups of M are of rank 1. The converse for torsion free groups is
also true: a torsion free group of rank 1 is isomorphic to some subgroup

i) It is to be emphasized that we assume commutativity what has not been done
in [3].
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R of ). We shall need the following simple criterion®): two rational groups
A and B are not isomorphic if and only if there exists an infinite set of
prime powers, I}, which annihilates exactly one of A and B, i.e. either
LA=0 and B0 or ¥LA=—0 and LB=-0, where LX denotes the inter-
section of all sets p*X, p* running over all elements of L.

If the equation nx-=a has a solution x€G for each a€G and all
rational integers n, then G is called an algebraically closed (or complete)
group. (An obviously equivalent definition is that nG= G for all non-zero
integers n.) It is well known®) that an algebraically closed group is isomorphic
to a direct sum of quasicyclic groups and of groups ). If H is an algebrai-
cally closed subgroup of G, then H is necessarily a direct summand of G,
i. e. G has a direct decomposition G — H - F for some subgroup F of G.7)
The union C of all algebraically closed subgroups of G is again algebraically
closed and so we have G — C-+ G’ where G’ has no algebraically closed sub-
group other than 0. Such a group G’ is usually called reduced.

For a non-zero element a of order p" the maximal non-negative integer
k for which the equation p*x==a is solvable in G is said to be the height
of a. If there is no maximal k& with this property, then a is of infinite height.

Let H be a subgroup of G. If for each a€ H, the solvability of nx—a
in G implies the solvability in H, then H is said to be a serving subgroup
of G. (For p-groups it is clearly enough to consider the mentioned equation
only for n=p".) An equivalent definition is that each coset of H contains
an element whose order is the same as the order of this coset in the factor-
group G H. It is evident that if K is serving in H and H is serving in G,
then K is a serving subgroup of G.

A subgroup B of a p-group G is termed a basic subgroup®) of G if
(i) B is the direct sum of cyclic groups, (ii) B is a serving subgroup of G,
(iii) the factorgroup G B is an algebraically closed group. By an important
theorem of L. KuLikov,”) each p-group contains a basic subgroup.

The following notation will be used. The sign -+ or X will denote the
(discrete) direct sum of subgroups. For any non-void subset K of G, {K} is
used to denote the subgroup of G generated by the elements of K. If G is
torsion free then by {K} we shall denote the least serving subgroup in G
which contains K. ({K}, is uniquely determined since G was supposed to be
torsion free; it is obvious that this subgroup of G consists of all those ele-
ments x of G for which nx€ K holds with a suitable non-zero integer n.)

Finally, we prove a simple lemma which will prove to be very useful
in our investigations.

) A full characterization of the rational groups may be found, for example, in Baer
[2] or in Réper and Szere [9).

") See e. g. Szere [10].

) Baer [1].

%) Kuuikov [T].
) Kuuikov [7] e
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Lemma 1. If a group G has Property P then each direct summand H
of G has again Property P.

Let K be a serving subgroup of the direct summand A of G. Then K
is a serving subgroup of G and therefore G has a direct decomposition

(1) G=K+L
with some subgroup L of G. Since K is a subgroup of H, (1) implies the
existence of a direct decomposition

H=K+L

for some subgroup L’ of H, g.e.d.")

§ 3. Torsion groups with Property P.

The first step in our examinations is the discussion of p-groups having
Property P. We shall prove the following theorem which, together with a
recent result of one of the authors,") will show that these groups are identical
with the p-groups in which the heights of the elements of finite height are
bounded.

Theorem 1. A p-group G has Property P if and only if it is the
direct sum of cyclic and quasicyclic groups and the cyclic summands are of
bounded order, i.e., G has the form

(2 G=_23,(p") where n—1,2,...,m or o

Jor some fixed integer m.

For the proof of the necessity let us consider a basic subgroup B of
the group G with Property P. By definition, B is a serving subgroup and
therefore we have

G=B+4C
where, again by the definition of B, C is an algebraically closed group and
hence C may be represented as the direct sum of quasicyclic groups. In
order to complete the necessity part of the proof, we have still to show that
the direct summands of B are of bounded order.

Assume, on the contrary, that the elements of B are not of bounded
order and let A la,} + la,} +... be an infinite direct summand of B (and

") Let us remark that, in general, Property P is not hereditary under homomorphic
mappings. Indeed, Theorem 3 will imply that the factorgroup G/H of a group G = {a} -}-{b}
(where a and b are of infinite order) modulo the subgroup H — {pa} does not possess
Property P. Nevertheless, if H is a serving subgroup of G, then G/H has again Property
P, but this tells us nothing new than Lemma 1.

10) See Kertész [4]: A p-group G in which the heights of the elements of finite
height are bounded has a decomposition (2).
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hence also of G) such that 1< pu < p*< ... where p"i = O(a,).") We show
that the subgroup

D = {a,—p"™a,, a—p" ™a,...)
is a serving subgroup of A not containing a,. In fact, a relation

pr(ha, + - +ha) —=m(a,—p=" a,)+---+m(a;—p's1 " @ss1)
(h; and m; are integers) implies, by the independence of the a;, that all of
m,,...,m, are divisible by p", establishing the serving character of D, while
the impossibility of
a,— m(a,—p—a)+ - +my(a.—p's1 s @)
follows, by the same reason, in view of the congruences
m,=—0 (mod p"s) , ..., m=0 (mod p).

Now, from Lemma 1 we conclude

A=D+E
and hence (A being a direct summand of B) B-— D--F for some subgroup
F of B. But this implies

ADSBD~F,
i.e. F contains a subgroup 3(p”), contrary to the fact that B is reduced.
Hence the stated condition is necessary.
In order to prove its sufficiency, let us suppose that G is a group with

a decomposition (2). Let C denote the maximal algebraically closed subgroup
of G, i.e. the direct sum of the quasicyclic direct summands, A an arbitrary
serving subgroup of G and H, the intersection A n C. On account of H,<C,
each equation of the form

p"w'x = hGHI
must be solvable for some x in G, and therefore also for some x’ in H. Then
y-—p"x' € H solves the equation

p'y=heH,
and by the choice of m we have y€C whence y¢H,. Consequently, H, is
an algebraically closed group. This result leads us to a decomposition

H=H,~+H.,.
H, as a serving subgroup of the serving subgroup H is serving in G and
since the orders of the elements in H, are bounded, by a theorem of KuLi-
Kov') we obtain that the reduced group H, is a direct summand of G.
Finally, H, as an algebraically closed group is a direct summand of every
group containing it, therefore we arrive at the result that H — H,+4-H, is a
direct summand of G. This completes the proof of the theorem.

11) O(a) denotes the order of the group element a.
12) Kuuikov [6]: If in a p-group G, H is a serving subgroup in which the orders of
the elements are bounded, then H is a direct summand of G.
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Now it is easy to pass from p-groups to arbitrary torsion groups.

Theorem la. An abelian torsion group G possesses Property P if and
only if it is the direct sum of cyclic p-groups and quasicyclic groups such
that, for each fixed prime p, the orders p" of the cyclic direct summands
3(p") are bounded.

The assertion of Theorem la is an obvious consequence of Theorem 1
and the following simple observation: If G is a torsion group and G, is a
p-component of G, then G has Property P if and only if each G, has Fro-
perty P. In fact, if G has Property P, then by Lemma 1 each G, must again
have this property. Conversely, if each p-component G, enjoys Property P
and H— > H, is a serving subgroup of G (where H, denotes the p-compo-

¥
nent of H), then H, is a serving subgroup of G, and hence by hypothesis
we obtain G,—H,+ K, for some p-group K,. This implies at once
G=2, 0= v(hn,-m)— ) I-r_m;—HLK

I ¥y

with K= > K,, q.e. d.

n

§ 4. Torsion free groups with Property P.")

At first we shall characterize those torsion free groups with Property P
which are reduced, i. e. do not contain subgroups isomorphic to the additive
group N of all rational numbers. As result we obtain the following

Theorem 2. A ftorsion free reduced abelian group G has Property P
if and only if G has a direct decomposition
G=R+R+--+R.
with a finite number of components where R; are isomorphic to the same
proper subgroup of the additive group of all rational numbers.

Let G be a torsion free reduced group with Property P. First of all we
show that G has a finite rank. For, let us assume the contrary, i.e., G con-
tains an infinite independent system a,, a,,.... We form the serving subgroup
H of G defined as

H={a,—2a,, a,— 3ay, ..., a;.—(k+ 1)@, ...},,

in other words, H consists of all those elements x€ G for which an equation
(3) nx = m(@—2a)+ -+ m(@—E&-+1)ai1) (ni +0)

13) In a letter to T. Szere, Professor A. G. Kurosn has informed us that his pupil
A. P. Misuina has deduced our results in § 4 from certain theorems of R. Baer in [2]. It
seems to us that it might be some interest in our present proof which does not appeal
to deep results, is more direct and rather elementary,



Abelian groups in which every serving subgroup is a direct summand. 101

holds with suitable integers n, n,,..., n.. Since, by the independence of the
a;, (3) with x replaced by a, implies n, =0, we see that a,§H and hence
H is a proper subgroup of G. Therefore, G'H is a torsion free group con-
taining a non-zero algebraically closed subgroup generated by the cosets
containing a,, a,, ..., consequently, in the reduced group G the serving sub-
group H can not be a direct summand. Hence G is of finite rank r, indeed.

Now let us consider a non-zero element ¢ in G and the serving sub-
group G, la}, of rank 1. By hypothesis we have

G = G,+H,

for some subgroup H, of G where, evidently, H, is of rank r—1. In view
of Lemma 1, using the same argument for A, in the place of G etc.,, we
finally conclude
“4) G=0G,+G;+---+G,
where G, are rational groups.

Next we show that all components G; in (4) are isomorphic to one and
the same rational group R. For definiteness let us assume that G, and G,
are not isomorphic. Considering that H - G, G, must have Property P if
the same is true for G, it is enough to consider only H and prove that our
last assumption leads to a contradiction. Suppose G, and G, are not iso-
morphic and let a, b be arbitrary non-zero elements of G,, G,. By a remark
in § 2, there exists a set of prime powers, *§, such that e. g.

\BGI :#70. 1:62:0
Since G, is not isomorphic to N, there is an integer ¢ for which the equation
gx-—a has no solution in G,. We show that the serving subgroup
H,~— la+qb}, can not be a direct summand of G. First we observe that
obviously R H, =0 holds. Further, if we had H — H, 4 H, for some subgroup
H,, of rank 1, of H, then we should have
PHy— BH, + R H,— BH =BG, + ¥ G, — LG, + 0

whence H, contains an element of the form ta==0 (f a rational number).
Considering that H, is of rank 1, it follows that any element of H, has the
same form. Therefore, H — H,- H, implies

b-—s(a}qb)+ta
1

with rational numbers s, {. Hence we conclude —7-—s 7" g(—ta) — a,
in contradiction to the choice of ¢. This establishes the isomorphism of G,
and Q..

From what has been said it follows that G,, G, ..., G, are isomorphic

to the same rational group R and if a; (i=1,...,r) denotes the element in
G; which corresponds to a fixed element of R, say, to 1, then we may write
G in the following form:

(5) G —Ra,+ Ra,+ --- + Ra,.
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In the proof of the sufficiency we shall need the following lemma which
may be considered as a slight generalization of a lemma due to R. Rapo0.")

Lemma 2. /f H— Ra,+ Ra,+ .-+ Ra, and n,, n,, ..., n, are arbitrary
rational integers such that (n,, n,, ..., n) =1, then H may be written in the
form

H = Rb,+ Rb,+ --- + Rb;
with b, = ma,~+n.a,+ -+ + nya;.

The statement is obvious if N— n,|+4 |n, -+ -+ n = 1. We assume
N >1 and use an induction with respect to N. N>1 and (n,,...,n)-—1
imply that at least two of the n: do not vanish, say, 'n,| = |n., > 0. Then we
have either n,+n,| < |n,| or |n,—n.| < |n,| whence

| |+ || -+ 4 || <N
for one of the two signs. (n,+ n,, n,, ..., m)—1 and the induction hypo-
thesis imply

H=Ra+Ra;+ --- +Ra.=Ra,+R(a: +a,)+ Ra;+ - -- + Ra, =

= Rb,+Rb,+ -+ + Rb;
with
b, = (n, + ny)a, + ny(a. + a,) + nyas+ « -« + me = nya, + nyas + -+ - M@y
completing the proof of the lemma.

Turning our attention to the proof of the sufficiency of the condition
in Theorem 2, let us denote by A an arbitrary (non-zero) serving subgroup
of a group G having the form (5). Each non-zero element b of H has a
unique representation

b=na,+ -+ n.a. (n; rational, n; = 0).
Let now b-— b, be an element in H for which k£ is as maximal as possible,
further n,, ..., n, are all rational integers and |n;| is minimal. Since H is a
serving subgroup of G, we must have then (n,,...,n)=1. Hence we can

apply Lemma 2 to conclude that there exists a direct decomposition of the
form

G=Rb,+Rb;+ --- +Rb.+ Ray1 -+ -- - + Ra,.
Now each non-zero element & of H has the form
b=mb,+---+mb (m; rational, m, =0, [ = k).

Among the elements with /< k& we choose a b with a maximal [ where
m, ..., m are integers and |m| is minimal. Then we have (m,,...,m)=1
and apply again Lemma 2 and so on. Finally, we arrive at a direct decom-
position

G=Rc;+Rc;+--- +Re,
such that, by a suitable choice of notation,

HERe,+---+Rc. (c1v..., CEH).

4) Rapo [8] or Szere [11]. The present proof follows exactly the same lines.
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Taking into account that / is a serving subgroup of G, we get Rc;< H for
i—1,...,8 and hence we obtain _
H=—Rc¢,+ --- + Rec,.
This implies at once
G=H+K

where K= Re¢,+---+ Re,, q.e. d.

In order to give a full description of the torsion free groups with
Property P, we prove a simple lemma.

Lemma 3. Let C be the maximal algebraically closed subgroup of a
torsion free group G and G- C-+ G'. Then G has Property P if and only if
the reduced group G' has the same property.

The necessity follows immediately from Lemma 1. In order to prove its
sufficiency, let us suppose that G’ has Property P. If H is a serving sub-
group of G, then the equation nx-—h (h€ Hn C) being solvable in G, its
unique solution lies in C and in H, i.e. in HnC. This implies that the
maximal algebraically closed subgroup of H coincides with HnC, and there-
fore there exists a decomposition

H=HnC)+H
where — without loss of generality — we may suppose H"< G". By hypo-
thesis we have G'— H'-+ K and, since C—(HnC)+L,
G=C+G=HnNCO)+L+H+K=H+(K+L)

which establishes the statement.

Recalling that a torsion free algebraically closed group is the direct
sum of groups isomorphic to N, Theorem 2 and Lemma 3 together imply
the desired result :

Theorem 2a. A torsion free abelian group G possesses Property P if
and only if it is of the form
G=2R,

where the groups R, are isomorphic to some subgroups of the additive group
N of all rational numbers such that those R, which are isomorphic to proper
subgroups of N are finite in number and isomorphic to each other.

§ 5. Mixed groups with Property P.

For mixed groups of Property P we have the following

Theorem 3. A mixed group G has Property P if and only if it is of
the form

(6) G=2.G,
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where each G, is isomorphic to a quasicyclic group or to a rational group
such that the proper subgroups of N are in a finite number and are iso-
morphic to each other.

Assume G is a mixed group with Property P and 7 is its maximal
torsion subgroup. Then 7 is serving in G and so we have a direct decom-
position G — T F where F is an adequate torsion free subgroup of G.
Lemma 1 implies that both 7 and F have Property P, consequently, Theorems
la and 2a imply a decomposition (6) where G, are subgroups of 3(p™) or A
satisfying the conditions of Theorems la and 2a. What remains to be veri-
fied is that no G, is a finite cyclic group. For the proof let us suppose that
G,={a}~3(p") (n<>) and G,~R where R is a rational group. The
existence of such groups G, and G, follows from the assumption according
to which G is a mixed group. We consider H — G, + G, and denote by H,
the serving subgroup of H generated by a-}-pb where b is an arbitrary non-
zero element of G,. By virtue of the fact that H# has again Property P we
infer H — H,-+ H, where H, must be a torsion group, considering that H is of
rank 1 and the rank is an invariant of the group. But the equation px —a--pb
has no solutionin A and therefore b can not belong to H,+ H., a contradic-
tion. This establishes the necessity of our condition.

Conversely, let the mixed group G have a decomposition (6) with the
mentioned properties and H a serving subgroup of G. If 7, is the maximal
torsion subgroup of H, then 7, is serving in G and hence 7; is an algeb-
raically closed group. Therefore we obtain a direct decomposition H— T, F,
for a certain torsion free subgroup F, of H. Taking 7'nF,-=0 into account,
by usual arguments we conclude

G=T+F with F, ©F.
With regard to the facts that F~G/T is a group covered by Theorem 2a
and F, is a serving subgroup of F, we get F— F,+ F, whence
G=T+F=(T\+T)+(F+F)=H+(T:+F).
Hereby Theorem 3 has been proved completely.
Theorems 1a, 2a and 3 together settle our stated problem.

§ 6. Abelian groups in which every subgroup is serving.

Our problem considered so far suggests an other problem closely
related to it: Which are the abelian groups every subgroup of which is serv-
ing ? A complete answer to this question is contained in the following
theorem.

Theorem 4. An abelian group G has the property that every subgroup
of it is serving if and only if G is an elementary abelian group.
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Let G be an abelian group in which every subgroup is serving. Then G
can not contain elements whose order is not a square free number, for in
the contrary case G would also contain an element g of infinite order or of
order p* for some prime p. This is, however, impossible considering that in
this case {pg} is by no means a serving subgroup in G. Hence G is an
elementary group, in fact.

Conversely, let G be an elementary group and H a subgroup of G.
Then assuming nx=h € H has a solution x in G, we decompose h=—h,+ --- + h,
such that h; ¢ H and the orders of h; are different primes p,. In view of the
existence of a solution x¢ G of the above equation, it is obvious that no
p; divides n whence it follows that there are multiplies A!-—m:h; with
nh:—h;. Then x—hy+ ...+ h! is a desired solution.
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