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Contribution to the definition of group.

By TiBOR FARAGO in Budapest.

Consider the usual four group axioms [—IV, which ensure a set G to
be a group:

I. There is a single valued binary operation (called multiplication) defined
in G, which associates with each pair of elements a, b of G an element ab

of G.

II. G contains a left unit element, i. e. an element e such that ea=a
for every element a of G.

I1l. For each element a of G there exists a left inverse element, i. e. an
element a ! such that a'a=e.

IV. The multiplication is associative, i. e. if a, b, ¢ are arbitrary elements
of G, then (ab)c = a(bc) holds.

It is well-known that each of the axioms [—IV is independent of the
other three. In particular IV is no consequence of I—IIl. In what follows, we
investigate the question what sort of systems arise if axiom IV is replaced
by some different but analogous postulate. More exactly, we consider all
possible conditions which can be obtained by permutation of the elements
and by another distribution of the parentheses occurring in the associative
law. In such a way we get the following 15 possibilities disregarding the
associative law itself:

1. (ab)c=a(ch); 6. a(bc)=a(ch); 11. (ab)c=(ac)b;
2. (ab)c— b(ac); 1. a(bc)=0b(ac); 12. (ab)c = (ba)c;
3. (ab)c —b(ca); 8. a(bc)=b(ca); 13. (ab)c = (bc)a;
4. (ab)c—c(ab); 9. a(bc)=c(ab); 14. (ab)c=(ca)b;

5. (ab)c —c(ba); 10. a(bc) =c(ba); 15. (ab)c —(cb)a.
We shall prove the following
Theorem. If we replace the associative law by one of the above 15

requirements (while the axioms 1—Ill retain their validity), then the resulting
system will be
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a commutative group in the cases 1., 2., 3., 8., 9., 10., 11,, 13., 14.;

a commutative system not necessarily a group in the cases 4., 5., 6.,

and finally a system neither commutative nor associative in the cases 7.,
14 15

In case 15. the system is a quasigroup.

We see that in most cases the above modification of the associative
law leads to a group which is moreover commutative.

Proof. We start with the following remark :

If one of the above 15 requirements (e. g. 4., 5., 6., 12.) can be derived
from the commutative law, then the corresponding system is not a group in
general.

In fact, the system S- {e, u, v} with the multiplication table

\e u | v
e 7

|
ulu|ej|v
S NE RN

satisfies axioms [—IIl and the commutative law, without being associative
(i. e. a group).

Now we are going to investigate each of the 15 cases mentioned above
separately.

1. (@b)c = a(ch).

Putting a=e¢ we have bc= cbh. Therefore the system is commutative
and moreover associative, since, by 1. and the commutativity

(ab)c—a(cb)—a(bo).

2. (ab)c = b(ac).

Putting a=—b"', c= b we have (b 'b)b—b(b 'b), b— be. Thus it follows
from 2. with ¢=e that

ab=ba.

Hence the system is commutative, and so the associativity is a consequence

of 2.:
(ab)c = (ba)c = a(bc).

3. (ab)c=b(ca).

Putting @ =— b —e we have ¢—ce. Hence from 3. with ¢=—e we infer
again ab= ba. Therefore the system is commutative and associative :

(ab)c = (ba)c = a(cb) = a(bo).
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4. (ab)c=c(ab).

This equation is a consequence of the commutative law; thus, by the
above remark, the system is not necessarily a group. However, it is commu-
tative, since (in the case a —e¢) 4. implies bc — cb.

5. (ab)c— c(ba).

Also this is a consequence of the commutative law, and so, as the above
example S shows, the system is not necessarily a group. Nevertheless it is
commutative, for in the case a=b-—¢ we have c=ce and thus (with c=¢)
ab= ba.

6. a(bc)=a(ch).

Since this is a consequence of the commutative law, the system is not
necessarily a group. But it is commutative (put a = e).

7. a(bc) = b(ac).

The system is neither commutative nor associative in general, as the
following example shows:

\e':a
|

e

=

e
e

u

11

8. a(bc) = b(ca).

Putting b—e we have ac-—ca. Hence the system is commutative.
Consequently

a(be) = a(cb)=c(ba)— c(ab) = (ab)c,

i. e., the system is a commutative group.

9. a(bc) =c(ab).

Putting a-—e we have bc=rcb, i. e., the system is a commutative group
since

a(bc) =c(ab)=(ab)c.
10. a(bc) = c(ba).
Putting b—e we have ac - ca, i. e. the system is a commutative group,

since
a(bc) = c(ba) = (ba)c = (ab)c.

11. (ab)c= (ac)b.
Putting @ =—e we have bc=cb i. e. the system is a commutative group

since
(ab)c = (ba)c — (bc)a == a(bc).

12. (ab)c = (ba)c.



136 T. Faragd

This is a consequence of the commutative law, i. e., the system is not
necessarily a group. Moreover it is not necessarily commutative, as the following
example shows:

\e;'u r
ee‘uir
uu‘ele
-ruleée

13. (ab)c = (bc)a.
Putting a =b-—e we get c =ce. Hence (with ¢ = e)
ab— ba.
Thus the system is a commutative group since
(ab)e = (bc)a — a(be).
14. (ab)c = (ca)b.
Putting @ =—c—e we get be=b. Hence (with b —¢)
ac=ca,
i. e, the system is a commutative group since
(ab)c = (ba)c = (cb)a = a(cb) =a(bc).
15. (ab)c = (cb)a.
The system is neither commutative nor associative in general as the
following example shows:

\ e:u_{r
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We can prove, however, that such a system is a quasigroup, i. e., the
equations xa =~5, ay=> have always a unique solution x resp. y. First we
show that for each element b of the system bb '—e holds. In fact, putting
a=e and c=b ' in (ab)c—= (cb)a we get

bb' = (b'b)e—ee—e.

Now we state that x = ba' is a solution of the equation xa = b. Indeed, by

15., we have
xa=(ba “a=(aa ")b—=eb 0.

On the other hand, y = (be)a ! is a solution of ay=56. As a matter of fact,
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y=(be)a ' satisfies the equation
(1) (ay)e = be,
for (making use repeatedly of 15.) we obtain
(ay)e —=(ey)a—=ya—((be)a "Ya—= (aa ")be —e(be) — be.
Now, it follows from (1) by multiplication with e on the right:

((@y)e)e = (be)e,
(ee)ay — (ee)b,
ay=2>.

The solution of xa ==b resp. ay = b is uniquely determined by the elements
a, b since xa — x'a implies

(xa)a'=(X'a)at, (ala)x=(a'a)x’, ex=ex', x=X,.
Furthermore ay—ay’ implies
(ay)e=(ay)e, (ey)a—(ey)a, ya-—ya,
i. ., (as before) y=—y". Thus we have completed the proof of our theorem.

Remarks. 1t is easy to show that if we drop axioms Il and III, none of
the above 15 requirements implies the associativity of the resulting system.
— It is worth while to note that in the cases 4., 5., 6., the left unit element
of the system under consideration is at the same time a right unit element
too. This follows from the fact that in these cases the system is necessarily
commutative. A similar statement does not hold in the cases 7., 12., 15. as
the above examples illustrate. — In cases 4., 5., 6., 12., 15. any left inverse
of an arbitrary element of the system is at the same time a right inverse.
(The above example shows that this is not true in the case 7.) The validity
of this statement follows in the cases 4., 5., 6. from the commutativity of the
system, and in the case 15. from the proof given above. In the case 12. one
proceeds as follows. Obviously it is sufticient to show that the system contains
only one left unit element, since then 12. implies ¢ ec— (a 'a)c— (aa ")c
for arbitrary elements a,c of the system, i. e., aa ' —e. Now let e and ¢ be
left unit elements in our system and let d be a left inverse of ¢’ relative to
e, i. e, de’—e. Then we have by 12:

¢ =ee' = (de')e’ =(e'd)e’=de' =e.
Remark (added October 14, 1953). That the modification 8. and 13. of
the assiciative law implies the commutativity of the groups is stated in the

paper: RAFAEL SANCHEZ—Diaz, Definitions of group involving quasi-inverse
elements, Proc. Amer. Math. Soc., 4 (1953), 424—428.
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