On the hermitian normalform of a matrix
and Sylvester’s law of nullity.

By E. EGERVARY in Budapest.

1. It is known’) that any square matrix A can be decomposed into the
product of a non-singular matrix T and of a matrix H which has the hermi-
tian normalform characterized by the following properties

«) is triangular, 1. e. it has the form W or w,

B) all the diagonal elements a; satisfy a;;—a;—0 i. e. a;—=1 or 0,

y) each row of H (or of H*)*) whose diagonal element is zero contains
only O elements,

d) each column of H (or of H*) whose diagonal element is 1 contains
(except this 1) only O elements.

Throughout this paper the term quasi-hermitian matrix will be used to
denote a matrix which satisfies the conditions «) ) ) only.

With regard to the following considerations it is very essential to remark
that the given matrix A can be decomposed in each of the following manners
A=TN; A=NT

O | A=T\; A=\T.
First of all we shall indicate a method for the hermitian (or quasiher-
mitian) decomposition which seems to be simpler then those published

hitherto?).
In order to get a decomposition of the form A= T~ we use te identity
all a‘]l [I aﬁ a_._."l 0 i A;
P an (L"an " anl 15167 70]; f]-—A'
y : - .
aﬂu anl 0 : A:E

if the first column of A contains at least one non-zero element a,;, or the

1) See e.g. C.C. Mac DurrE, Vectors and Matrices, Carus Mathematical Monographs,
7 (1943).

2) H* is the transpose of H.

3) See also E. Eaerviry, On a property of the projector matrices and its application to
the canonical representation of matrix functions. Acta Sci. Math. (Szeged), 15 (1953), pp. 1—6.
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identity
e |0,0,...,0] 0.
A— ““ + 0 A (@: arbitrary)
. 0.

if all the elements of the first column are 0.

Treating in the same way A’ and so on, one arrives obviously to a

decomposition

A—Bw
where in case of convenient choice of the elements «; B is non-singular and
W has the quasihermitian form.

Finally premultiplication of W by a convenient non-singular (unimodular)
matrix reduces all the elements above the non-vanishing diagonalelements to
0 and thus the hermitian normalform is atteined,

Starting with the last column of A one arrives to A=Tw=T),n and
the decomposition of A*=T< yields A=¥T'=\T"

2. The main object of this paper is to show that the hermitian (as well
as the quasihermitian) normalform of a matrix can be advantageously used
to the straightforward proof of SYLVESTER’s law of nullity which states that

The nullity of the product of two matrices is at least as great as the
nullity of either factor, and at most as great as the sum of the nullity of
the factors.

The nullity of a square matrix A is defined as the order of A — rank of
A. Hence using the designation o(A) for the rank of an n-th order matrix,
SYLVESTER’s law of nullity can be expressed by the following inequalities
(2 0(A)+0o(B)—n=0¢(AB) = min (¢(A), o(B)).

The inequality on the right is an obvious consequence of the definition
of the rank and it implies immediately the well-known fact that multiplication
by a non-singular matrix does not change the rank of a matrix.

The inequality on the left constitutes the essential content of SYLVESTER’s
law of nullity and fcr this inequality there exists — as far as the author is
informed — no straightforward, elementary proof. There are proofs which
consider the number of the distinct solutions of the equation ABx=0"),

while other proofs®) are based on theorems concerning the affin transforma-
tions of the n-dimensional vector-space.

We prove first SYLVESTER’s law of nullity for two diagonal matrices
L@y, Q... Qun ), {by, by...b,,> whose elements satisfy

i—ai=0, bi—bi=0,
4) See f. i. G. A. Dirac, Sylvester's law of nullity, Math. Gazette, 34 (1950), p. 305,

5) See f. i. I. E. lllmnoB, BBEACHHE B TEOPHIO JMHEHHBIX npocTpancts, 1952, pp.
118—119.
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In this case we have obviously

0<as)— Zﬂﬁ. 0<{b;;> = th‘
1 1
and

0(<aiiy<biy) = o0({aibiy) = Z iibii.

But it is clear that 1—a; =0, 1—b;=0, hence

Z(T-—au)(l—bﬁ)=ﬂ —ZH.-;—Z&.'.—-{— Za.-.-b.-.-éo
1 1 T T

0(ai><bi)) = Zaiibii = Tai + Zbi—n =o(<aiid) + 0 (Kbi>) —n,
thus our proof is complete.

Let us now consider two equally situated triangular matrices W, and
w, whose diagonal elements satisfy a;—a; =0, bi;—b;=0. In this case we
have obviously

e(Wv)=2aibi=2ai+2bi—n
and if %, and W, are hermitian (or quasihermitian) normalforms then
o(\)=2ai, 0(%)=2bu,

consequently we have proved the following special case of SYLVESTER's law
of nullity:

If W, and W, are (equally situated) hermitian or quasihermitian nor-
malforms, then

&) o(Wv)=0(V)+o(w)—n.

Suppose now that A and B are two arbitrary n-th order matrices and
apply the decompositions

A=T. 4\, B=41T,
where |T.|==0,|T: #=0 and W, W, are hermitian or quasihermitian normal-
forms. Then we have obviously
0(A) =eo(W), o(B)=2o(W)
0(AB) = o(T. W4\ T,))—0o(WV\)

and substitution of these values of o(W.), 0(W), o(W% %) in (3) immedi-

ately gives

_ o(AB)=0(A) + ¢(B)—n,
L &, 13

Corollary. If AB==0 then ¢(AB)=0 and in this case it follows
from (2) that

If the product of two square matrices AB is null the sum of their ranks
cannot exceed their order :

4) ¢(A)+e(B)=n.
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3. It is seen that the proof of SYLVESTER’s law of nullity can be based
on the quasihermitian decomposition of a matrix which requires considerably
simpler operations than the hermitian decomposition.

Nevertheless we took into consideration the hermitian normalform too
because it exhibits some remarkable properties to the discussion of which
we now proceed.

Let us suppose that the two n-th order matrices P,, P, satisfy the
equations

(5) P,+P,=E,

(6) P,P;=P,P,=0

where E denotes the n-th order unit-matrix. (5) implies that
o(P)+o(P.)=o(E)=n.

(6) and the above-mentioned corollary imply

e(P)+e(P)=n,
hence
(7N o(P)+o(P)=n.
Furthermore (5) and (6) imply
(8) =P, =P

The equations (5)—(8) clearly show that P, and P, are complementary pro-
jectors, i. e., the right eigenspace of either is the orthogonal complement of
the left eigenspace of the other.

It has been pointed out®) that the complete solution of a system of
homogenous linear equations Ax =0 is equivalent to the determination of
the orthogonal complement of the sub-space spanned by the row vectors of A.

Thus if o(A)=r, the complete solution of Ax=0 requires the deter-
mination of a matrix X such that

AX=0, oX)=n—r or o(X)+o(A)=n.

Suppose now that A is a projector, i. e. A’= A, We see that in this
case the complete solution of Ax=—0, i. e., the orthogonal complement of the
sub-space spanned by the row vectors of A is immediately given by the
complementary projector X = E— A because

A(E—A)—A—A'—0
0(E—A)=n—o(A)=n—r.

We shall prove now that

If a matrix has the hermitian normal form <N then it is a projector, i.e.
it satisfies the equation

and by (7)

a

=N\

B) See ).
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To this purpose we prove first the folloving

Lemma. If A is an arbitrary matrix and P is a projector, then the
matrix Q=P -+ PA(E—P) is also a projector.
Indeed
(E-QQ=(E—-PAE—-PPE+A(E—-P)=0
since (E—P)P=0.
Consider now a matrix W in the hermitian normalform. By condition
#) all its diagonal elements satisfy ai(1—ai;)=0, hence the diagonalmatrix
{ai;> is obviously a projector. Further, having regard to conditions y) d) it
is easy to see that
W=l + [@aa;j(1 —a;)] =<ai> +<a:> K1 —ai»
i. e. Wis of the type considered in the above lemma, consequently
v = g d
According to this result, the complete solution of a system of homo-
genous linear equations Ax =0 can be obtained in the following way. Decom-
pose A into the product T of a non-singular matrix T and the hermitian
normalform W. Then Ax=Twx=0 is equivalent to Wx=0 and a sys-
tem of n—e(A)—n—o(W) distinct solutions of Ax==0 is furnished by
the n—@(W) columns of E—w which are not 0.

4. As an illustration of the method described above we shall find a
comlete system of solutions of

—2 5 1
—1 2 1
Ax = 0 e

a T

x|
| % == (),
1 21 1x

Starting with the left column of A we have

2
]
0
1 —1

2-2 5 1 21—t 2 1] [0 O 1 —1
1—1 2 1| |1 400 o of
0O 0 1-—1| |O 00 1 —1]
1 —1 1 2 1 0 0—1
211 —121] [e&][0000 11001 —1]
] “, 0
0 * @, i 1 +
l_J | «, -1
570000 [2e 14 O
By f1e O] 1000 O]
T o " |0e 18] |JO O01—I =TK
B 1 e —138 0 00 O
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Here K is quasihermitian and the elements «;, 8; are arbitrary and can

be chosen so that |T|==0. Finally permultiplication by a convenient uni-
modular matrix reduces K to the hermitian normalform:

1 0—=2 0] [1 —1 2 1 i—1 0 3
D1 -0.01 10 00 0 10 00 0f
00 10 0O 01 —1| |0 O 1 —=1] ~
.0 4.1 0BT 0 09 00
Consequently we have ¢(A)==2 and
1—1 0 3] [0 1 0-=3
I | O ¢ R ¢ 0O 1 0 O
ot o o N O N TN T [
000 010 00}

hence the n—o(A)=2 columns of E—~ which are not 0 constitute a
complete system of solutions of Ax=0, i. e.

2—2 5

1] s
bt 2o a) 1 8
coiga O OR0- B 7 2 R ] e e
TR e NI

(Received July 2, 1953)



