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On close-packings of spheres in spaces
of constant curvature.

By L. FEJES TOTH in Budapest.

In the closest packing of non-overlapping equal circles of the common
plane each circle is touched by six others'). The density of this packing

equals zz/J/12=0,9069.... Spheres on these circles as equators form a
close layer of spheres. Of such layers a packing of equal spheres can be
made up in which each sphere is surrounded by twelve others. Such a packing
has a density equal to -1/ 18 =0,74048... . We have good reasons to
suppose that no regular or irregular arrangement of equal spheres can have
a greater density. But no attempt has so far succeeded in proving this con-
jecture.

A new point of view arises by considering the problem in spaces of
constant curvature. The aim of the present paper is to point out what beau-
tiful results can be expected in this direction.

Let us start by recapitulating the analogous results®) on surfaces of
constant curvature, i. e. on the surface of a common sphere, or on the
Euclidean plane or on the hyperbolic one. Let us consider on a surface of
a constant curvature k£ a system of at least three non-overlapping circles of
radius r. Then the surface can be divided into triangles so that the density
of the system in each triangle is = d where d denotes the density of three
circles of radius r mutually touching one another in the triangle ¢ determined
by their centres. Obviously d depends only on the value k7, so that we may
write d — d(kr®). The density D of the circles, on the whole surface, can be
defined by the arithmetic mean of the densities in the triangles in question
weighted by the areas of the triangles. So we have
Q) D = d(kr’).

Let us denote an angle of { by 2:x/N. The number N = N(kr*) (which is not
necessarily an integer) can be interpreted as the ,number“ of circles of radius
r we can put on a circle of radius r on a surface of curvature k. On the
sphere we have 2 = N <6, in the Euclidean plane N =6 and in the hyper-
bolic one N>6. If N=2,3,... then there exists a regular decomposition

) An account of this range of problems can be found in the book of the author:
Lagerungen in der Ebene, auf der Kugel und im Raum. Berlin—Gottingen—Heidelberg, 1953,

%) L. Fejes Totn, Kreisausfiillungen der hyperbolischen Ebene. Acta Math. Acad. Sci.
Hung. 4 (1953), 103—110.
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of the surface of Schléfli symbol {3, N} whose faces are congruent to f. The
densest packing of circles arises in this case by placing the centres in the
vertices of this {3, N}. The circles are then the incircles of the faces of the
dual decomposition {N,3}. The density of this arrangement is D = d(kr?).

If N—o=,d(kr’) tends to 3/sr increasingly, so that we have indepen-
dently of kr*

D=3 -0955....
7T
The density 3/-x can be reached by an arrangement of horocircles centred
at the vertices of the tessellation {3, ~} which plays a r0le in the theory of
modul functions.

Let us now turn to the problem in the space. By a (three-dimensional)
space of constant curvature we mean the surface of a four-dimensional Eucli-
dean sphere, or the Euclidean space, or the hyperbolic one. We have the
following conjecture. Consider in a space of constant curvature k at least
four non-overlapping spheres of radius r. Then the space can be decom-
posed into tetrahedra so that the density of the spheres in each tetrahedron
is = d(kr*), where d(kr) denotes the density of four spheres mutually tou-
ching one another in the tetrahedron = determined by the centres of the
spheres. If we define the density 4 of the spheres in the whole space by
the arithmetic mean of the densities in the tetrahedra weighted by their
volumes, then we have by our conjecture

(2) 4= 6(kr).

If the dihedral angles of = are equal to 2x/3, 2xt/4, 2:/5 or 2/6,
the space can be decomposed into tetrahedra congruent to = so as to form
a regular honeycomb {3,3,3}, {3,3,4}, {3,3,5} or {3,3,6}, respectively.
The first three decompositions are central projections of the regular 5-cell
(simplex), 16-cell (cross polytope) and 600-cell upon their insphere. The
honeycomb {3,3,6} decomposes the hyperbolic space into tetrahedra of
greatest volume. Spheres around the vertices of these honeycombs form,
according to our conjecture, a densest packing. In the last case the spheres

are horospheres. The density 4 of this packing can be expressed in terms
of an interesting series”):

8) It can be shown that lim d(x)r—-zlg.- where T denotes the greatest volume a tet-
x->-m
rahedron can possibly have in the hyperbolic space of curvature —1. We use here the
value of T in the form
13 ( 1 1 1 1 1
et A i we paEh mm ko g aaRoL]

given by H. S. M. Coxerer, The functions of Schlifli and Lobatschefsky, Quarterly Journal
of Mathematics 6 (1935), 13—29.
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J:xl_l’l'!lmd(X) = (] +-2—1§- Ty '5—2 -} '.?2‘—}-‘ -8? — J :0,853 she .
This is probably the absolute maximum of the density of at least three equal
spheres (of finite or infinite radius) in spaces of constant curvature.
The direct way to the above conjecture is analogous to the proof of
(1) and requires the solution of the following maximum problem. Let o be
the sum of the solid angles of a tetrahedron = in a space of constant cur-
vature, all sides of which have a length = 2r and the radius of the circum-
sphere of which is = 2r. Among these tetrahedra we have to find that one
which maximises the quotient’) o/r. The best tetrahedron is probably the
regular one. Owing to the fact that the Euclidean space cannot be filled out
by regular tetrahedra, the densest packing of spheres involves here more
complicated figures. This throws light on the fact that the problem of filling
out the greatest part of the space by equal spheres (of arbitrarily chosen
size) seems in hyperbolic space to be easier to attack than in the Euclidean
one. In the Euclidean space our conjecture yields the estimation
e 1 T
4<|18 (arc cos?—-3]=0,77964... 3
Instead of the direct way mentioned above we approach our conjecture
in an other way and try to support it by two remarks having also some interest
in themselves. Both remarks rest on a general theorem °) which may be stated
as follows:
Let P,,...,P. be n =3 points of the surface S of a common sphere

and let F(o) be a non-decreasing function defined for®) 0= g::_—;-l/?s

Further let Ap=min (PP,, ..., PP,) denote the spherical distance of a variable
point P of § from the point P; nearest to it and dS the area element of S
at P. Then

1

3) < | Fltryas = 1 [ FGryas
A 8

where s=p, p, p, denotes an equilateral spherical triangle of area s=3S8/(2n—4)

and ip = min (Pp,, Pp., Pp,) the distance of P from the vertex of s nearest to it.
For a non-increasing function F(g) the inequality holds evidently in

opposite sense. Equality holds if (and, in case F(e) is strictly increasing or

decreasing, only if) the points P,,..., P, are vertices of a {3,2}, {3,3},

{3,4} or {3,5}.

1) In what follows we shall denote a set and its content by the same symbol.
8) See the book quoted in ).
6) Y« 8§ is the length of a greatest circle of S.
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Let S=4:r and let r be a number such that 0 <r < :r. In case the

function F(o) is defined by
('L for USpcr
F(o) = (0 for r=o¢=m=m,

our inequality yields

P

S5.a
where 7T and f denote that part of S and s, respectively, which is covered
by the circles C,,...,C., and ¢,c,,c;, respectively, of radius r centred at
P,..., P, and p,, p,, p,, respectively.

Since the sum of the angles of s equals s-}-:r, the density of ¢, ¢, ¢,

in s is
S+ e T
g Crama{t 47
This is just the density of C,,...,C, on S.

Let us now suppose that the circles C,,...,C, do not overlap. Since
in this case the density computed just now is 77§, it follows from the last
inequality that the sum of the areas of the circular sectors s¢,, sc., s¢; is less
than, or equal to, the area of their union #. Consequently, the circles ¢, ¢, ¢;
do not overlap, so that 2r cannot be greater than the lenght of a side of s.

The result obtained can be formulated as follows: From among n =3
points of a sphere of surface area 4:tr there can alvays be selected two,
having a spherical distance

- &8s c-a

cot* m, — |
(4) = arc cos fl
where
3 n n
1) —_———
" n—26

is a half angle of s. This theorem, which can also be proved in various
ways directly, is equivalent to (1) in case k> 0.

Now we are able to estimate the maximal number n of spheres of
radius r in a space of constant curvature & we can put on a sphere of
radius r. Let 2« be an angle of the triangle determined by the centres of
three spheres of radius r touching one another. We have

sin l.-'?f-[ " 1
sin2)kr  2cos [kr
Evidently, n equals the number of points we can place on a sphere of sur-

face area 4ot so that any two points have a spherical distance = 2e-
Hence by (4)

sin ¢ =

2cos2e = cot*w,— 1.
Expressing this inequality in terms of r we have our first remark:
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The maximal number n of spheres of radius r of a space of constant
curvature™) k = r*(arctan | 2)* which can be put on a sphere of the same
size satisfies the inequality ™)

cot*m, +tan* | kr = 2.

o N

Fig 1,

Defining N = N(kr*) by
cot* my --tan* | kr — 2,
our inequality takes the form
(5) n=N.

Considering spheres of unit radius, N = N(k) can be interpreted as the
yShumber* of unit spheres in a space of curvature k arranged ,ideally close“
on a unit sphere”). Fig 1. shows the function N— N(k). If N=3,4,6 or
12, our inequality is exact. The spheres touch in these cases the inner one
in the vertices of a regular triangular net {3,2}, {3,3}, {3,4} or {3,5},
i. e. in the vertices of a regular triangle inscribed in a greatest circle, of
a regular tetrahedron, octahedron or icosahedron, respectively. Furthermore,

7) The restriction kr* < (arctan | 2)> comes from the supposition n -3 in (4).

%) This inequality is equivalent to cot® @, —tanh? | —kr = 2.

) In the case of Euclidean space (5) yields n < N(0)=—=134... . See: K. Scuvrre
and B. L. van per Waeroex, Das Problem der dreizehn Kugeln. Math. Ann. 125 (1953),
325—334. There is shown that n =12,
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(5) gives the exact asymptotic estimation for N — o, namely
N 27T

~rmy n el
lim = lim ———
N-oru= e-’ I =&r N = (12 ) —kr } 3

The tangent points of the extremal arrangement can be considered in the
limit case as the vertices of a regular net {3,6} on a horosphere.

Our second remark concerns the n-hedron of minimal volume containing
a given sphere S in a space of constant curvature. Let a be a plane touching
S at the point A and U a convex domain in a. Further let u be the central
projection of U from the centre O of S and H the convex hull of O and U.
Obviously, the volume of H can be expressed in the form

H— | F(AP)dS

where F(¢) is an increasing function'). Applying the inequality (3) to this
function we get the following theorem:

Let 'V be a convex n-hedron in a space of constant curvature containing
a sphere of surface S. Further let s be a regular spherical triangle on S of
area s— S(2n—4) and v the hexahedron bounded by the three planes
through the sides of s and the three planes touching S at the vertices of s.
Then

{6) V=02n—4)r

and equality holds only if V is a regular tetrahedron, hexahedron or dodeca-
hedron circumscribed to S.

The minimum property of the regular polyhedra with trihedral vertices
according to which they have the least volume among the polyhedra of the
same insphere and the same number of faces, was already known in Eucli-
dean space. Now we see that this minimum property is preserved in spaces
of constant curvature.

Let us now return to our packing problem. If k> 0, the problem is
equivalent to the following one: to find on the surface of a unit sphere of
the four-dimensional Euclidean space such an arrangement of m points in
which the least spherical distance of two points reaches its maximum 2r,.
Spheres of radius r, around the points of a such arrangement form a
«densest packing.

The best arrangements are for m- 2,3,4 and 5 two antipodal points,
the vertices of a regular triangle inscribed in a greatest circle, the vertices
of a regular tetrahedron inscribed in a greatest sphere and the wvertices of
a regular 5-cell, respectively. The best arrangements of 6 and 7 points are
not unique and we have r,— r.—r.. For m=8 the best arrangement coin-

10y S.F(AP) is equal to the volume of the sphere of radius Op where p is the
projection of P upon a.
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cides with the vertices of a regular 16-cell. Our statements concerning the
cases m-=—6,7 and 8 follow from a more general result of HAjOs and

DAVENPORT").
For no other number of points the best configurations are known.

However, it may be supposed (in accordance with our conjecture) that for
m=120 the points must be distributed in the vertices of a regular 600-cell.
The following table shows the values of r=r,, N and the approximative

values of the density

m K
A= P (2r,,—sin 2r,)

in the cases mentioned above. For m -2 and 3 the values of N have been
determined by a natural convention.

m | r N| 4
2 00° 1F
3 60° 2| 0,587
4 arctan }2 ~ 54°44° 8" | 3| 0,616
5| arcsin g > 52°1420" | 4| 0,681
6 45° 6| 0545
7 45° 6| 0,636
8 45° 6| 0727

120| arc sin ‘_'5;_‘:130 12| 0,774

In what follows we allow the curvature k£ of the space to be positive
or negative, but we restrict our attention to values of Ar* for which N is an
integer = 3. Let O,, 0,,... be the centres of the spheres §,,S,, ... of such a
packing. Consider the set I; of the points of the space whose distance from
O; is less than, or equal to, the distance from any other centre O; (j==1i).
I, is a convex polyhedron (finite or infinite) containing S;. We shall call it
the cell of S;. The cells 7', Iy, ... cover the space simply and without gap.

Suppose first that the number of the faces of all cells is = N. Then
by (6) we have I': = (2N—4)v, i.e.

S R X

4= . =2N—=3'"
Since the hexahedron » has a solid angle at O; equal to 4:1t/(2N—4), the
right side of the last inequality equals the density of S; in ». On the other

A

11) See Problem 35, Matematikai Lapok 2 (1951), p. 68.
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hand, the face angles of » at O; are equal to an angle of an equilateral
triangle of side 2r. Four such hexahedra can be made up to form a regular
tetrahedron of side-length 2r. Consequently, the density considered just now
is nothing else than the density J(kr*) defined in connection with the
inequality (2). Thus
A, = o(kr).

Defining -/ as a mean-value of the densities ./, of the packing in the singie
cells we have a fortiori 4 = d(kr°).

Fig. 2.

Our discussions show especially: Among all arrangements of 120 points
on the surface of a four-dimensional sphere with at most dodecahedral cells,
the system of the vertices of the regular 600-cell is the best one. Let us move
the vertices of the 600-cell in a little neighbourhood of their original posi-
tion. Since the cells of the moved vertices do not cease to be dodecahedra,
the system of vertices of the 600-cell has been recognised as a locally best
distribution : the polytope 11’ arising from the regular 600-cell 11 by little
motions of their vertices on his circumsphere has a shorter edge than 11,
unless Il" and Il are congruent.

We proceed now by considering the case of a cell /% with more than
N faces. Since by (5) S: can be surrounded by at most N spheres, I
cannot be circumscribed to S; and thus its volume cannot be small. This
support the conjecture that the inequality 4, = d(kr°) holds in any case.

In the following somewhat more detailed discussion of the case N— 12
we shall make use of a sharpening of (6) which, in the case of a dodecahedron,
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reads as follows: In a space of constant curvature let D be a regular
dodecahedron of insphere s and circumsphere S. Then among all dodecahedra
D containing s, the volume of the common part of D and § assumes its
minimum for the regular one:

(7) . DS = D.

The proof is the same as that of (6) using instead of F(¢) the function
which arises from F(¢) by replacing the values F(o) greater than S f by S'f
where f denotes the surface area of s (which was denoted in the proof of
(6) by S).

If N—12 and k=1, we have
/5—1
4
Let us compute the radius R of the circumsphere S of the regular dodeca-

hedron of insphere-radius r:

r=—arc sin 18°.

R = arc cos—;- ,-"'7-;-31-’5 =22°14’.

Since a sphere s of radius r can be touched by at most 12 others,
among the centres O, O,, ..., O,; of s and 13 further spheres we must have
a relation of the form

Lot s
G ﬁ OOi L~ f.
with a constant ¢ > 2r=36° The demonstration of the inequality
I~ _ 24r+42R ey
(8) 13~ 00, T-Jﬁ 39
would complete the proof of the extremal property of the 600-cell.
Let us control this inequality, for example, in case OO, = ... = 00,,=.2r.

Then OO,;, = 2a where a denotes the altitude of the tetrahedron « of edge-
length 2r. Since a--=30° the mean-value in question is greater than, or
Art+2a, 3osv.
13

We can also compare (8) in case OO, ...--00,; with a conjecture
of SCHUTTE"), according to which OO, ...—00,; >40°15".

Both constans are essentially greater than the constant in (8). Thus (8)
seems to be satisfied in abundance.

Suppose now that the cell /° of s has more than twelve faces of which
those generated by O,,..., O,; have points with § in common. Let us move
O, ..., O,; on the half-lines QO0,,..., O0,,; under the conditions QO; = 2r

equal to,

12) See K. Scutrrre and B. L. vax per Waerpen, Auf welcher Kugel haben 5, 6, 7, B
oder 9 Punkte mit Mindestabstand Eins Platz? Math. Ann. 123 (1951), 96—124.
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(i==1,...,13) and the condition of (8). Then it is not difficult to show that
I'S assumes its minimum in the case when, say, Q0,=...=—=00,,=2r
and OO0,; = 2R. Thus the problem reduces to the case of dodecahedral cells
and the solution is given by (7).

As far as | know no extremum property of the three “non ftrivial”
regular polytopes {3,4, 3}, 13,3, 5} and {5, 3, 3} is yet known. We hope to
contribute, with our above remarks, to the beginning of a systematic study
of the regular polytopes from this point of view.

(Received August 11, 1953.)



