Some saddle-points in $A \otimes \overline{A}$.

By DAVID ELLIS in Gainesville, Florida. 1)

§ 1. Lattice saddle-points.

Let Γ be a complete lattice 2) with partial ordering \leq . Let p and q be two properties each of which is relevant to the members of Γ (that is: dichotomous in Γ). We call such a property a lower property (upper property) in Γ provided the set of all elements of Γ which have the property is non-null and contains all predecessors (successors) of any of its elements. If p is a lower property in Γ and q is an upper property in Γ , we say that an element of Γ , with respect to p and q, is a saddle-point if it has both properties and is maximal with respect to having property p and minimal with respect to having property q. If there is at least one element of Γ having both properties and if every such element is a saddle-point, we say that p and q are saddle-point properties. Clearly, this amounts to saying that the set of elements having property p and the set of elements having property p intersect in a non-null, totally unordered subset of Γ .

§ 2. The topolattice.

Let S be an infinite set. The topolattice 3) Λ of S is the set of all T_1 topologies definable in S with the partial ordering: $\alpha \leq \beta$ if and only if every subset of S open under β is open under α . As is well known 4), Λ is a complete lattice.

We denote by Λ the lattice obtained by dualizing the ordering of Λ . We denote by $\Lambda \otimes \overline{\Lambda}$ the direct product (cardinal product; cf.²)) of the

¹⁾ Presented to the American Mathematical Society; Christmas, 1953.

²⁾ GARRETT BIRKHOFF, Lattice theory. Revised ed. (American Mathematical Society, New York, 1948.)

³⁾ ROBERT BAGLEY and DAVID ELLIS, On the topolattice and permutation group of an infinite set. (In preparation.)

⁴⁾ R. Vaidyanathaswami, Treatise on Set Topology. (Indian Mathematical Society, Madras, 1947.)

lattices Λ and $\overline{\Lambda}$. As is well known 1) the property of being T_2 (HAUSDORFF) is a lower property in Λ and the property of being bicompact is an upper property in Λ . In fact, we have the

Theorem (Vaidyanathaswami). The properties of being T_2 and of being bicompact are saddle-point properties in Λ .

To actually obtain a class of these saddle-points other than familiar examples such as the Euclidean topology of a closed interval of real numbers we may take $s \in S$ and let τ_s be that topology in S in which all sets are open except those which have s as a member and whose complements are infinite.

§ 3. Permutation saddle-points.

Let f be any permutation of the set S. We consider the properties for (σ, τ) in $A \otimes \overline{A}$:

Property p: The mapping f is continuous when σ is taken as domain opology and τ as range topology.

Property q: The mapping f is an open mapping when σ is taken as domain topology and τ as range topology.

It is obvious that \underline{p} and q are, respectively, a lower property and an upper property in $A \otimes \overline{A}$. We assert the

Theorem. The Properties p and q just defined are saddle-point properties in $A \otimes \bar{A}$.

Proof. The proof is given in the following two lemmas. First we observe that there is a class of saddle-points independent of f. Let τ be any topology in S defined as follows: there is a cardinal number m which is infinite and a proper subset G of S is open under τ if and only if its complement G^* has a cardinal number less than m. Then (τ, τ) has properties p and q.

Lemma 1. If (σ, τ) has properties p and q and if $(\alpha, \beta) > (\sigma, \tau)$, then (α, β) does not have property p.

Proof. Assume the hypotheses. Now, $\alpha \ge \sigma$ and $\beta \le \tau$ and one of these inequalities is strict. Suppose first that $\alpha > \sigma$. Let G be a set open under σ and not open under α . Then f(G) is open under τ , since (σ, τ) has property q, and is open under β , since $\beta \le \tau$. But $G = f^{-1}(f(G))$ is not open under α and f fails to be continuous in (α, β) . Suppose on the other hand that $\beta < \tau$. Let H be a set open under β and not open under τ . Since H is not open under τ and (σ, τ) has property $q, f^{-1}(H)$ is not open

⁵⁾ Advanced Problem 4548, Amer. Math. Monthly, 60 (1953), p. 482.

under σ , and, hence, is not open under α , since $\alpha \ge \sigma$. Thus, f fails again to be continuous in (α, β) .

From a proof dual to that of Lemma 1 we have

Lemma 2. If (σ, τ) has properties p and q and if $(\alpha, \beta) < (\sigma, \tau)$ then (α, β) does not have property q.

Finally we note that if G is a subset of S with f(G) = G and if we take as γ_G the topology in S with G and all complements of finite sets taken as sub-base of open sets, then (γ_G, γ_G) is a saddle-point.

(Received October 26, 1953.)