168

Some saddle-points in .7 .1.

By DAvID ELLIS in Gainesville, Florida.!)

§ 1. Lattice saddle-points.

Let 7" be a complete lattice”) with partial ordering =. Let p and ¢ be
two properties each of which is relevant to the members of /7 (that is:
dichotomous in /7). We call such a property a lower property (upper property)
in /" provided the set of all elements of /” which have the property is non-
null and contains all predecessors (successors) of any of its elements. If p
is a lower property in /" and ¢ is an upper property in /', we say that an
element of /', with respect to p and g, is a saddle-point if it has both pro-
perties and is maximal with respect to having property p and minimal with
respect to having property ¢. If there is at least one element of /" having
both properties and if every such element is a saddle-point, we say that p
and ¢ are saddle-point properties. Clearly, this amounts to saying that the set
of elements having property p and the set of elements having property ¢
intersect in a non-null, totally unordered subset of 7"

§ 2. The topolattice.

Let S be an infinite set. The topolattice”) ./ of S is the set of all T,
topologies definable in S with the partial ordering: « = 3 if and only if
every subset of S open under 3 is open under «. As is well known?), ./ is
a complete lattice.

We denote by ./ the lattice obtained by duslizing the ordering of .1.
We denote by .1 .1 the direct product (cardinal product; cf®) of the
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lattices ./ and .1. As is well known ‘) the property of being 7, (HAUSDORFF)
is a lower property in ./ and the property of being bicompact is an upper
property in 1. In fact, we have the

Theorem (VAIDYANATHASWAMI). The properties of being T, and of being
bicompact are saddle-point properties in .

To actually obtain a class of these saddle-points other than familiar
examples such as the Euclidean topology of a closed interval of real numbers
we may take s€ S and let v, be that topology in S in which all sets are
open except those which have s as a member and whose complements are
infinite,

§ 3. Permutation saddle-points.

Let f be any permutation of the set S. We consider the properties for
(0,7) in AQ 4.

Property p: The mapping f is continuous when ¢ is taken as domain
opology and = as range topology.

Property q: The mapping f is an open mapping when o is taken as
domain topology and 7 as range topology.

It is obvious that p and ¢ are, respectively, a lower property and an
upper property in .1 & 1. We assert the

Theorem. The Properties p and g just defined are saddle-point pro-
perties in A& 1.

Proof. The proof is given in the following two lemmas. First we
observe that there is a class of saddle-points independent of f.") Let = be
any topology in S defined as follows: there is a cardinal number m which
is infinite and a proper subset G of S is open under = if and only if its
complement G* has a cardinal number less than m. Then (v, ) has properties
p and ¢

Lemma 1. If (o, t) has properties p and q and if (¢, 3) > (0, 1), then
(e, 3) does not have property p.

Proof. Assume the hypotheses. Now, « =0 and 5=+ and one of
these inequalities is strict. Suppose first that « > 0. Let G be a set open
under ¢ and not open under «. Then f(G) is open under v, since (o, )
has property ¢, and is open under 3, since #= . But G— f'(f(G)) is
not open under ¢« and f fails to be continuous in (e, 3). Suppose on the
other hand that @< . Let H be a set open under & and not open under .
Since H is not open under = and (o, ) has property ¢, f l(H) is not open
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under o, and, hence, is not open under «, since « = o. Thus, f fails again
to be continuous in (e, 2).

From a proof dual to that of Lemma 1 we have

Lemma 2. /f (0, 1) has properties p and q and if (e, ) < (o,1) then
(e, 7) does not have property q.

Finally we note that if G is a subset of S with f(G)= G and if we
take as y. the topology in § with G and all complements of finite sets taken

i

as sub-base of open sets, then (y, ) is a saddle-point.
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