On the existence of non-discrete topologies in infinite abelian groups.

By A. KERTÉSZ and T. SZELE in Debrecen.

It is obvious that a topology 1) can be introduced into any abstract group G, namely, the discrete topology 2) Also it is obvious that for finite groups there exists this trivial possibility only. In what follows we show that every abstract infinite abelian group admits a non-discrete topology. According to our knowledge the corresponding problem for non-commutative groups is still open in general.

In the sequel by a group G we shall mean always an additively written abelian group. A topology in G is uniquely determined by a complete system Σ of neighborhoods of 0, where Σ is a system of subsets of G satisfying the following conditions:

- 1. The only element common to all the sets of the system Σ is 0.
- 2. The intersection of any two sets of the system Σ contains a set of the system Σ .
- 3. For every set U of the system Σ there exists a set V of Σ such that $V+(-V)\subseteq U$.
- 4. For every set U of the system Σ and element $a \in U$ there exists a set V of Σ such that $V + a \subseteq U$.

Conversely, every topology defined in G can be obtained by a suitable system

¹⁾ In what follows, by a topology in G we always mean a topology having the following separation property: for any two distinct points a and b of G there exists a neighborhood of a not containing b. Actually this property together with the continuity of the group operation defined in G imply the much stronger separation property of regularity (see [3], p. 54), i. e., for every neighborhood U of an arbitrary element of G there exists a neighborhood V of the same element such that the closure of V is contained in U. — As for the terminology used see [3]. (Numbers in brackets refer to the Bibliography at the end of this note.)

²) A topology defined in G is called *discrete* if every subset of the set G is open. A necessary and sufficient condition for a topological group G to be discrete is that the identity of G is a neighborhood of itself. On the other hand, it is also obvious that G is non-discrete if and only if every neighborhood of the identity contains an infinity of elements-

³⁾ We denote by V+(-V) the set of all elements c-d in G where $c\in V$ and $d\in V$.

 Σ of subsets of G having the properties 1.-4. If every set of Σ is a subgroup of G, then conditions 3. and 4. are automatically fulfilled and the topology induced by Σ is called a *subgroup-topology*.

For a prime number p we denote by $C(p^m)$ a cyclic group of order p^m resp. PRÜFER's group of type (p^∞) according as m is a natural number or $m=\infty$. The group $C(p^\infty)$, in a multiplicative realization, is isomorphic to the multiplicative group consisting of all p-th, p^2 -th, p^3 -th, ... complex roots of unity. Thus $C(p^\infty)$ becomes a topological group, furnished with the "natural topology" which is induced by the norm of complex numbers.

We denote by $\{a\}$ the cyclic group generated by the group element a. All elements of (finite and) squarefree order in an abelian group G form a subgroup which is called *the elementary subgroup of* G. An elementary abelian group is decomposable into a direct sum of groups $C(p_k)$.

In the sequel we make use of a theorem of PRÜFER and KUROSH ([1], [2], [4]) according to which for an abelian group G the following statements are equivalent:

- a) G is a torsion group with finite elementary subgroup;
- β) G is a direct sum of a finite number of groups $C(p_k^{m_k})$ with arbitrary (distinct or not) primes p_k and $1 \le m_k \le \infty$;
 - γ) G satisfies the minimum condition (for subgroups).

Now we are going to prove the following

Theorem. 1) Every infinite abelian group admits a non-discrete regular topology satisfying the first axiom of countability. Moreover, an abelian group admits a non-discrete subgroup-topology if and only if it does not satisfy the minimum condition (for subgroups).

PROOF. Let G be an infinite abelian group which does not satisfy the minimum condition. If G contains an element a of infinite order, then the set of the cyclic subgroups $\{a\}, \{2a\}, \ldots, \{2^na\}, \ldots$ can be taken as a complete system of neighborhoods of G, defining a non-discrete subgroup-topology in G. In the contrary case, if G contains no element of infinite order, the elementary subgroup of G is infinite (by virtue of the theorem of PRÜFER and KUROSH), i. e., G contains a subgroup which is a direct sum of an infinite number of groups $C(p_1), C(p_2), \ldots, C(p_n), \ldots$. But in this case the system of subgroups B_1, B_2, \ldots , where B_n denotes the direct sum of $C(p_n), C(p_{n+1}), \ldots$, can be taken as a complete system of neighborhoods having the desired properties.

Now let G be an infinite abelian group satisfying the minimum condition. Then, by the above theorem of PRÜFER and KUROSH, G has a subgroup

⁴⁾ The authors believe this theorem to be new, and in the contrary case they hope to be excused by the shortness and simplicity of their proof.

 $C(p^{\infty})$, and a suitable complete system Σ of neighborhoods of 0 in the natural topology of this subgroup $C(p^{\infty})$ (satisfying the conditions 1.—4.) induces a non-discrete topology also for G. It is obvious that all the topologies constructed are regular and satisfy the first axiom of countability.

Finally we show that if a group G satisfies the minimum condition (for subgroups), then G admits no non-discrete subgroup-topology. (This holds also for non-commutative groups.) Indeed, let M be a minimal subgroup of G such that M belongs to a complete system of neighborhoods Σ of 0 in a subgroup topology of G. Then M is contained in every subgroup of Σ for in the contrary case the intersection $M \cap N$ of M with a subgroup $N \in \Sigma$ not containing M would contain, by property Σ , a subgroup of Σ properly contained in Σ (in contradiction to the minimality of Σ). Hence Σ is the intersection of all subgroups of the system Σ , i. e. by 1., Σ 0. Thus we have obtained that the topology under consideration is discrete. This completes the proof.

Bibliography.

- [1] A. Kurosch, Zur Zerlegung unendlicher Gruppen. Math. Annalen, 106 (1932), 107-113.
- [2] H. Pröfer, Untersuchungen über die Zerlegbarkeit der abzählbaren primären Abelschen Gruppen. Math. Z., 17 (1923), 35—61.
 - [3] L. Pontrjagin, Topological groups. (Princeton Math. Ser. 2.)
- [4] T. Szele, Ein Analogon der Körpertheorie für Abelsche Gruppen. Journal f. d. reine u. angew. Math., 188 (1950), 167-192.

(Received October 14, 1953.)