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Some functional equations related with the associative law.

By M. HOSSzU in Miskolc.

§ 1. Introduction.

We consider a single-valued binary operation, written x-y, defined on
a set M (x,y,x-y€M). The associative law states that

(1) x(y-2)=(x-y)2
holds for arbitrary elements x, y, z€ M.

By interchanging the order of the neighbouring “factors” in some of
the “multiplications” figuring in (1) we get 16 equations which are, however,
reducible to one of the following four equations:

(1 x(y-2)=(x-y)-2

2) x-(y-2)=z-(y-x) (GRASSMANN’s associative law).
(3 x(y-2) =y-(x-2)

(4) x-(y-2)= (z:x)-y  (cyclic associative law).

Two examples of the reduction of other associative laws to the equati-
ons (1)—(4):
1) The equation
(y-2)-x=(y-x)2
is equivalent with
X*(Zxy)—2z%(xx)),
i. e. with (3), by introducing the notation s s-f.
2) If we put in the equation
x-(z:y)=(x-y)z (TARKI’s associative law)

z==Xx and denote - x-y, we see that the operation satisfies the commutative
law: x-t=t-x. Hence our equation implies each of the equations (1)—(4),
under the only supposition that the set of the elements f-—=x-y (x,yeM)
contains every element of M.
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If x-y=F(x,y) is a function of two real variables defined on the in-
terval (a, b), then we might write (1)—(4) rather in the form

) Flx, F(y, 2)] = FIF(x, ), 2]
@) A Fl=Fla Fo,l |
3) Flx, F(y, 9= Fly, F(x 2] x,y,2, Fé(a, b).
(4) Flx, F(, )] — FIF(z, x), J]

These functional equations can be united into the more general functional
equation
() Flx, G(», 2)] = H[K(x, ), 2].
E. g. in case F(x,y)= G(y,x)= H(x,y)= K(y, x) (5) becomes
Flx, F(z, )] = FIF(y, x), 2]

which is equivalent to (4).")

The most general continuous and strictly monotonic solution of the
functional aquation (1) is

(1) F(x, )= '[f(x)+f()] (“quasi-addition”)
where f(f) is an arbitrary continuous and strictly monotonic function with the
inverse function £ '(f) (f '[f(t)] = t). This was proved by L. E. ]. BROUWER [1]
in case if unit and inverse elements exist and in the general case by J. ACZEL[2].

The object of this paper is to solve the functional equations (2)—(5).
The solutions are

) F(x,3) = f ' [@f(x)+ ef() + 3]

3) F(x, 1) =1 " [g(x)+ )]

@) F(x, 1) =1 1f(x) +7(3)]
Fx,3)=h [g(x)+v)]

t \ H(x, ) —h [g(x)+f()]

() , G(x, )= [k(x) + £(7)]
K(x,y)=— g '[¢(x)+k(»)

We suppose continuity and strict monotony in the cases (2)—(4) and
continuous differentiability in the case (5).

The associative law as a functional equation was examined first by
N. H. ABEL [3]. He has given the solution (1°) under supposing also com-
mutativity by reducing (1) to a differential equation; more exactly he has
supposed the validity of two equations the consequences of which are the
commutative law and (1) (hence also (2), (3) and (4)).

') (5) is at the same time also a generalization of the equations F[x, G(y,2)]=

- FIF(x, y), 2], F(x,y -+ z) = F[F(x, y), 2] satisfied by the transformations with one vari-

able and one parameter resp. one additive parameter [7]. (The numbers in brackets refer
to the Bibliography at the end of this paper.)
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The special cases ¢« = —1 resp. g(f) = f(¢) of the solution (2") and (3")
have been given by A. R. SCHWEITZER [4] under suitable hypotheses by
reducing the equations (2) and (3) to differential equations. We shall sup-
pose differentiability only to solve (5) in § 4. The equations (2) and (3) will
be solved in § 3 by reducing them to known functional equations. F. FARAGO
[5] has examined all these equations in the case where unit and inverse
elements exist. In particular he has proved that (4) implies (1). But this
involves (1’) and thus we have (4) with the restriction f(e)=—0 (where e
denotes the unit element). In § 3 we shall show that the existence of the
unit element is not necessary for the solution of (4) (and so, of course, also
the restriction f(e)=0 might be omitted). We begin our investigations in §
2 by examining some algebraic properties of the equations (2)—(4).

§ 2. Some elementary algebraic consequences of the equations (2)—(4).

Theorem 1. Every operation which satisfies Grassmann’s associative
law, i. e.

(2 x:(y-2) = 2:(y-x),

is bisymmetric:
(x-p)-(u-v) = (x-u)-(y-7).
Proor. Repeated application of (2) gives
(x-y)-(u-v) = v-[u-(x-p)] = v-[y-(x-w)] = (x-u)-(y-v),

proving so the assertion of Theorem 1.

Theorem 2. Let x-y be a single-valued operation defined on a set M.
If the equation
@) x-(y-2)=y-(x-2)
holds for arbitrary values x,y, z€ M, further there exists an element z,€ M
such that the equation
(6) X-2Zy==§
has a unique solution x for all elements s€M, then the operation s =t defi-
ned by the equation
(7) sel=x-1 (s=x-2)
satisfies the associative law (1) and the commutative law.

Proor. First we observe that the solvability of the equation (6) invol-
ves that the operation s« ¢ defined by (7) is uniquely determined in M. —
We show that s« ¢ is commutative. Using the notations s —=x.z, and f-—y-z,
and taking (7) and (3) into account we have

selt=xt=x(y-2)=y(x2)=y-s=t=s.
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Considering again (3) with

X=S5#ll (5=x-2),

yu=teu (t=y-2),
we see that

S«(fx2)=1t%(s%2)

holds for arbitrary s,t,z€ M. From this
Se(Zxl)=—(s%2)=t

follows immediately because s #f is commutative. This completes the proof
of Theorem 2.

Theorem 3. Let x-y be a single-valued operation defined on a set M;
suppose that the cyclic associative law

(4) x:(y-2)=(z-x)y
holds and there exists an element ec M with the property
(8) e-Xo—Xo

at least for one element x,€ M, further that for this x, the cancellation law
holds :

(9) xu't] — xu'tg implieS tl — r-_g.
Then x-y satisfies the associative law (1) and the commutative law.

Proor. First we observe that e is a right unit, i. e. y-e =y holds for
all ye M. This follows by putting x-—x, and 2—e¢ in (4) and taking also
(8), (9) into account:

X, (y-e)=(e-x,)-y=x,-y implies y-e==}.
Now, making use of (4), we have
x:[y-(z-0] = x:[(t-y)-2] = (z-x)-(t-y) = [y-(z- X)) -t = [(x-)-2] - L
thus, by putting f-e,
(1) x(y-2) =(x-y)-2.
The commutative law can be verified as follows:
x-y=(x-e)-y=x-(e:y)=(y-e)- x=y-x.
Thus Theorem 3 is proved.

ReEmARK. The cyclic associative law (4) is stronger than the associative
law (1) because (4), (8) and (9) imply (1) but, conversely, (1), (8) and (9) do
not imply (4) since, for example, there are groups in which the commutative
law does not hold.~)

) If the set M contains only a finite number of elements, then (4) and the cancellation
laws alone imply (1).
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§ 3. The solutions of the functional equations (2)—(4).

Theorem 1°. The most general continuous and strictly monotonic solu-
tion of the functional equation

(2) x(32) = 2(y-x)
s
@) xy=f @)+ ef(y) + ]

where f(t) is an arbitrary continuous, strictly monotonic function and «==0, g
are arbitrary constants.

PRrROOF. It was proved in Theorem 1 that the operations satisfying (2) are
bisymmetric. J. AczeL [6] has proved that the most general continuous, strictly
monotonic solution of the functional equation of bisymmetry is

x-y=f" e f(x)+ef(y)+ 2l
Putting this into (2) we get

fH{af()+elaf(y)+ef@)+ 8]+ 2} =
I Haf@)+ elaf(y)+ ef(x)+ B8]+ 8)
from which it follows that (2) is satisfied if and only if «,=«* and this
completes the proof of Theorem 1°.

REMARK. The solution (2) contains the “quasi-addition” (1°) in the
particular case where «=1. This solution might be characterized e.g. by
supposing the existence of a left unit e. In fact if we suppose that there exists
a number e which satisfies e-x==x for all numbers on the interval (g, b), then
f(x)=&f(e)+e«f(x)+ 4, i.e. ¢ 1; so by denoting ¢(t) — f(f) -+ 8 we have
(1) x-y=9¢ g +9]

On the other hand, the solution contains as a particular case (¢ = —1)
the “quasi-difference”. This solution might be characterized by the condition
that x-x must be independent from x, in fact, if this condition is fulfilled, then

(@+e) f(Q)+3=(@+e) f()+7
holds for arbitrary x, y, from which it follows that ¢’ | ¢ =0, ¢ =—1 (¢=0
would contradict with the strict monotony), hence by denoting ¢(f) — f(f)—#
we have
xy=q px)—qg(») (“quasi-difference”).

A. R. SCHWEITZER has characterized this particular solution by supposing
the existence of an inverse operation x==z#y of z--x-y for which the
equations (x-y)#y=x and (xsy)-x=y are valid.

(2) contains also mean operations, as x-x=x holds if
(¢ +a) f(x)+ 3~ f(x), hence #—0 and ' fe=—1, i.e. = :]—;-b
(“gilt edge”).

D 14
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Theorem 2. [f the continuous and strictly monotonic function F(x, y)=x-y
defined on the interval (a, b) satisfies the functional equation
3) x:(y-z) =y-(x-2)
and if there exists a value z, in (a,b) such that for any s there exists a
solution x of the equation

(6) X-Zp=S§,
then and only then x-y is of the form
3) x-y=f"[g®)+f()]

where f(t), g(t) are arbitrary continuous and strictly monotonic functions with
the only restriction that g(x,)—0 must hold for the solution x = x, of the
equation x-z,=2,.

ProOF. Theorem 2 states that the operation s%f defined by
(M Skt == x-1 (s=1x2)
satisfies (1). Since the operation s## is continuous and strictly monotonic by
its definition we have by (1°)

sxt =1 [f()+f(O],
consequently, using the notation g(x)—f(x-z) and taking also (7) into
account, we obtain (3): :
x-y=s#y=f"[f(x-2)+fM=1"[gx)+f()]-
We can verify immediately that these functions satisfy (3) with arbitrary g(¢)
and f(f). The restriction g(x,)==0 follows from the equation Xx,-z,=z,, i.€.
f(z) = g(x,) + f(z). Thus Theorem 2" is proved.

REMARK. The ‘‘quasi-addition” (17) as a particular solution might be
characterized by supposing the existence of a right unit e; thus from (3)
f(x) = g(x)+f(e) or with the notation ¢(x)= f(x)—f(e) we have

xy=f[f)+f)—f@) =9 ' [9(x)+9(»)].

A. R. SCHWEITZER has characterized this particular solution by supposing
the existence of an inverse operation of x-y which satisfies the equations
(x#y)-y=2x and (x-y)xx = ). ;

An other particular solution the “quasi-difference” f '[—f(x)+f(»)]
might be characterized by the independence of x-x from x.

Theorem 3'. The most general continuous and strictly monotonic solution
of the functional equation

4) x-(y-2) = (2-x)-y
is
#) x-y=f"[f(x)+f(»)]

where f(t) is an arbitrary continuous and strictly monotonic function.
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PrOOF. The proof goes along the same lines as the solution of (1)
{(cf. [2]). [The reduction to (1)—(1") given by Theorem 3 would furnish a
weaker theorem, therefore we give a straightforward proof.]

(¢) We define the function F,(x) recursively:
Fa(x) =x:Fo1(x), Fy(x)=x.
We see immediately that the equations
Fuim(X) = Fu(x): Fin (%) = Fu(x)-Fu(x),
Fon(x) = Fu[Fu(x)] = Fu[F.(x)]
hold for any pair of arbitrary integers n, m.
(%) We define ¢(f) for rational f values by

o 2)=F 1E )

where A is an arbitrary but fixed constant and by making use of (e) it is
easy to prove that ¢(f) satisfies the functional equation

o8)o(e)=ol5 )

(7) The definition of ¢(f) can be extended continuously for arbitrary ¢
values:
¢ () = lim ¢(r.)

where {r,} is a sequence of rational values tending to f, and one sees, that
the functional equation
¢ (xX)9(y)=g(x+y)
is satisfied for arbitrary values of x,y and that ¢(f) is strictly monotonic.
Finally, writing the new variables x and y for ¢ (x) and ¢(y), respectively,
we obtain the solution (1°) with f(f) = ¢ '(f), if we show that the function
@(f) defined above takes every value x of the interval (a, b).
We have to discuss therefore (cf. [2]) the limit points of the interval
(a,b). If A-A> A, then
lim ¢(x) = b.
If
lim (x-p) >y,

then we choose A =a and thus ¢(1)=a. If
lim (x-3) =y,

then a - e and
lim ¢ (x) = a.

- )



212 M. Hosszu

Finally, if
lim (x-y) <y,
then
lim(z:x)<z and lim(x-y)=a

X =pda X=ra

is true for every y, i.e. the role of a is the same as that of the number O
in multiplication. For example this last assertion follows easily from (4) since
the supposition lim (x-y) <y and the strict monotony imply

lim(x-y)=a, and y-z>lim(x-y)-z=yp-lim(z-x), i.e. z>lim(z2-x).
Moreover,
lim(x-y)=—a
holds too because the contrary supposition would imply

t=1lim(py-x)=Ilim p-(x-2) = lim (z-p)-x = lim [lim (2-y)-x] < lim (2-y) =
= lim (x-2)-y == lim [z-(p-Xx)] = lim [2-lim (p-Xx)] = lim (y-Xx) =1
which is a contradiction. In this case unit and inverse elements always
exist (cf. [2]) and we define ¢(0) —e, ¢(—x)— @(x)"' (#(x)-¢(x) "' =e).
This implies
lim ¢ (x)— a.

x—+-0

Thus by the continuity of ¢(f) this function takes every value y€(a, b).

§. 4. The solution of the general functional equation (5).

Theorem 4. [8] The most general continuously differentiable and strictly
monotonic solutions of the functional equation

(5) Flx, G(y, 2)] = H[K(x,), 2]
are

(5a) F(x, y) = hlg(x)+v(y)]
(5b) H(x, y) = h[g(x)+f(»)]

(5¢) G(x,y) =y '[k(x)+f(»)]
(5d) K(x,y)==g g (x)+ k()]

where f(t), g(t), h(t), k(1), ¢ (t), v (t) are arbitrary strictly monotonic functions
with continuous derivatives.
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Proor. We shall reduce (5) to a differential equation. Differentiating
(5) with respect to the variables x resp. y, we get -
Fl[x' G(y! 2)] %3, H, [K(xr y)! z]!(l(xv J’),
F:l[x’ G(}’, 2)] Gl(ys 2) = H, [K(x» Jr’), Z] Kd(x: }’),
where the indices 1 and 2 denote the partial differential quotients with respect
to the first and second variable, respectively. Forming .
Filx, G(y,2)] __ Ki(x,y)
Flx G2l — Kixp 702
and defining the functions ¢(f), v(f) by the equations

with an arbitrary fixed value y,, further, writing the new variable y for
G(y., 2), we get the differential equation

Fi(xy) _ 9'()

F(x,y) v ()’
or, what is the same,
A[F(,2), 9 () +v ] _,
a(x, ) i
Thus the functions F(x, y) and ¢(x)+ «(y) are dependent:

F(x, y) = hly(x)+v(»)]
and this is (5a). Substituting this into (5) we have

hig(x)+v[G(p, 2)]} — H[K(x, y), ]
from which by keeping successively y = y, resp. x ==X, resp. z = z, constant

(5b), (5¢) and (5d) follow immediately and this completes the proof of
Theorem 4.%)

We see from the proof that the solution of (5) can be obtained without
supposing differentiability, if one of the functions (5a)—(5d) is given. E. g.
if G(x,y)=x-y, then we have the functional equation
(10) F(x, y+2) = H[K(x,y),2].

This is a generalization of the functional equation [7]:

F(x,y+2)=F[F(x, ), 2].

%) It might be observed that each of the functions (5a)—(5d) belongs to the class
of functions having the form

@[z(x) + = (Y.

The functions of this form (and only these) can be represented by nomograms with three
straight scales. — As to equation (5) cf. also [8].
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In order to solve (10) it is enough to suppose that there exists at least
one x, for which the equation K(x,,y)==¢ has the unique solution y==g(f),
further, that F(x,, y) = F(x,, z2) implies y=2. Thus, by choosing x=x,,
(10) gives

(11) H(t, 2) = Flx,, g(t)+2] = h[g (t)+2].
Putting this into (10) with y =0, we have

(12) F(x, 2) = h{gIK(x, )]+ 2} = hlg(x) +2].
Finally, putting (11) and (12) into (10), we get

(13) K(x,y) =g '[g(x)+]
On the other hand the solutions (11), (12), (13) satisfy (10) with
arbitrary functions g(?), h(?), ¢ (¢).
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