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IPIC representation of lattice automorphisms.’)

By DAviD ELLIS in Gainesville, Florida.

In Memory of My Son, Karl Reser Ellis.

§ 1. Introduction.

In two previous papers [2], [5]7), it has been shown that the permutation
group of an infinite set is isomorphic to both the automorphism group and
the IPIC group [2] of the topolattice on that set. Thus, the automorphisms of
a topolattice may be represented by IPIC mappings. In this note this
representation theorem is extended to arbitrary bounded lattices. The bounded-
ness is no real restriction since bounds may be adjoined to a lattice without
effect upon the automorphism group.

One may observe that the automorphism group of a lattice fails by far
to determine the lattice. This is not only indicated by the present note, but
is explicitly shown by recalling that if S is an infinite set and if one considers
the Boolean algebra of subsets of S [3] and the topolattice on S [2], both of
these have the permutation group of § as their automorphism groups although
one is distributive and the other is non-modular.

t

§ 2. Notation.

Let /" be a lattice possessing first and last elements ¢ and /Z, respec-
tively. To avoid trivial cases we also suppose thereis a S€ /7 with ¢ <Z< 4.
For £€ 1" we denote {7 € I'|yy, =&} and {nel'|y=E) by (&) and 71(E),
respectively. //(5) and [1(%) are, of course, the principal ideal and principal
dual ideal, respectively, of & in /. By /° we understand /° dually ordered
and by I'® I" we understand the cardinal product; that is, /7 I" consists
of the pairs (¢, ) of elements of /" among which partial order is defined by
(¢, 3)=(y,9) if and only if ¢ =y and 3= 0.

1) Presented to the American Mathematical Society ; Summer Meeting, 1954,
2) Numbers in brackets refer to the Bibliography at the end of this note.
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Let C denote the two-element Boolean algebra with elements 0< 1.
For a mapping f: I'® Foﬁﬁ C, we denote the sets {&¢ ['f(«,&)=0} and
tnel'f(y, ) =0} by @(«;f) and ¥#(g;f), respectively, for e, g€ I

We denote the automorphism group of /" by A and its members by
lower case german letters.

" § 3. IPIC mappings.

A mapping f:I'® fﬂ—»m_C is called an IPIC mapping if it is isotone
and principally idealistic; that is:

(i) If (e, 3) = (7, 0) then (e, 2) = (7, 9).
(ii) If «€ I, there is a #€ I" with

B(g; §) = ().
(iii) If g€, there is an « € I' with

D(a; £)— 1T(3).
One may show by examples [1] that for general /" no two of the
properties (i), (ii), (iii) imply the third.
Let M denote the set of all IPIC mappings f: I'® f;;m ik

The first four of the following lemmas were previously formulated in [2].
Throughout the first five lemmas, f denotes an arbitrary member of M.

Lemma 1. If 7 = «, then @ (e;f)c D (y;f). If 0 = 3, then
P(3;5) o P (05 1)

ProOF. Suppose v =« and &€ P(«;f). Then f(¢, #)=—0. But
(7, %) = (¢, %) and f is isotone so that f(y, #)=0 and #¢ D(y;f). The
second statement of the lemma follows from a dual proof.

Lemma 2. If «€l’, there is a g€’ with ®(«;f)— il (3). If pel,
there is an « € I" with H(3; §) = 1l («).

PrOOF. By (ii), there is a g€ /" with &(g;f)= [I(¢). By (iii), there is
a yel with ®@(y;f)=TII(8). Thus, f(7,8)=0 and y¢ ¥ (3;1) = l(e).
Hence, y =e«. If 6¢€ ®(y;f),0 = 5. However, f(e, 7)=0 and 0 € @(«;f).
Thus, @(y;f)c ®@(¢;f). By Lemma 1, @(y;f) = ®P(«;f), since y = «. The
second statement of the lemma follows from a dual proof.

Lemma 3. @(«;f)= 71(3) if and only if & (8, 1) = ().

PROOF. Suppose @(«;f)= 7I(3). By (ii), there is a d €1’ with
4i(0;f)=1I(z). Thus, f(¢,d)=0 and J = 2. By Lemma 1, ¥(g;f)c ll(e),
By Lemma 2, #(g;f) is a principal ideal in /. Also, «¢€ & (8;f). Thus
P(3; )= 1l(«). The reverse implication follows dually. '
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Lemma 4. If @(a;f)= ©(y; 1), then «=7. If ¥(3;f)= ¥(0; f), then
B=0,
PrROOF. Assume @ («;f)= @(y;f). By Lemma 2, there are g and ¢
with @(e;f)— [1(3) and ®(y;f) = [1(d). However, [1(3)— I1(d) implies
g=0d. By Lemma 3 then, /I(«)==1I(y) which implies «= 7. The second
statement of the lemma follows from a dual proof.

Lemma 5. If ¢ I'\E=¢,E54, then §(5, ¢)=F(2,5) = 1.

PrOOF. Suppose f(§, ¢)=0. Then &€ &(¢;f). By Lemma 2, there is an
@ with &(y;f)= Il(¢). Then ¢ < &= «. By Lemma 3, @(«;f)— I(g)=1".
Now ®(¢;f)=I" because f(¢,7)=f(#, 1), for all 6, and f(6,1)=0, for
some #. By Lemma 4, «=¢ so that £=¢, a contradiction. The other part
of the lemma follows from a dual proof.

Theorem 1. /f f,g € M and if h is defined by
h(e, 3) :yé\f‘ (f(e, V)V 8(7, 7)),

then h € M; that is, M forms a groupoid®) under “dual convolution”.

Proor. Since h(y, ¢) =0 and h(4, ¢) =1, from Lemma 5, h: I'® T‘(;—t:) 4
Suppose «, 5) = (y,0). Then ¢« =y and g=4d. Thus, f(¢ &) = (3, &) and
g(E 7)) =g@E 9) so that h(e,#) = h(y,d) and h has Property (i). Select
a€l’. Now h(e, 3) =0 if and only if there is a y €/’ so that f(e,y)=

g(7, ) =0. Let ®(a;f)=11(z). Let ®(y;g)— (). Suppose §=L.
Then f(«, 1) == g(n,8)=0 and h(e, 3)=0. Suppose, on the orther hand,
that h(e, 8) = 0. Then f(«, 7)= g(y, #) = 0, for some . Thus, y = 2, g(», 5) =0
and g = C so that @(«; h)= 1 (%). If & = «, h(§ ) =0. Thus, /I(e) < #(E; h).
Suppose h(§,{)=0. Then, for some 7, f(& 7)=g(,{)=0. Hence
y€W(E;g)=1(y), by Lemma 3. Thus, y=# and f(7)=—0 so that
§€ ®@(y;f)=1l(e), by Lemma 3. Finally then, #(L; h) = Il («¢) and we have
shown that h has Property (ii). The fact that h has Property (iii) can be
shown by a dual argument.

We shall denote the ‘“dual convolute” of f and g, defined as h in
Theorem 1, by f*g.

§ 4. Isomorphism of M and .

Lemma 6. One may define a mapping F:A— M as follows: F(f)=—k
where k(e, 3)=0 if {(«) = g and k(. p) =1 if {(e) = 3.

PrROOF. We desire to show that k as defined is in M. Suppose
(¢, 8) = (7,90). If k(y,0)=0, then f(y) = 0 = g. Since f is an automorphism

9) See the foreword on algebra in [4].
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and ¢ = 7, f(¢) = 8 so that k(e, 8) =0. Thus, « has Property (i). That k is
onto is obvious. Select « € I". Clearly,

Pi(t(e); k) — 1(e) and D(t ' (3); k)= 71(3).
Lemma 7. F: % — M defined in Lemma 6 is biuniform and onto.

ProoF. Select f € M. Define f:/"— I" by f(«)— § where ﬁ(f-i') = (a; f).
By Lemmas 1—4, | is a permufation of /' Let &= :J,(D(E;f)zﬁ(f(;":)),
@(n; §)— [ (f(1)). By Lemma 1, [1(i(n))< 1(§(E)). Hence, {(§) = f(5) and §
is isotone. One concludes that f is an automorphism of /" Clearly, F([)—f
so that F is onto. If f,qa €3 and f-i-q, then for some «, either f(«) =% q(«)
or g(e) = f(«). Thus, F(f)==F(g) and F is biuniform.

Theorem 2. F is an isomorphic mapping A onto M (M conceived as
a groupoid under “dual convolution”). Thus, N and M are isomorphic groups.

PrROOF. In view of Lemmas 6 and 7 it suffices to show that
F(iq) = F()%F(a), where f,a€ %A and (fa)(€)=f(a(§). Select «, 3¢ 1" with
f(a(e)) =3 Now f(e) =g '(5). Hence, writing F(j)=f and F(g)=
— g, f(e¢,a'(2))=0. Also, g(a '(3), 8)=0 so that (f* g) («, ) = 0. Suppose,
alternatively, that f(g(e)) & 5. Then f(e) = q'(8). If f(e,7)=—=0=g(y,3),
y=q'(%) and f(e)=y, a contradiction. Then (fxg)(e, 3)=1. Thus,
F(fq) ~ F(7)*F(g).
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